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Significance

The great majority of studies 
estimating the impact of climate 
change on biodiversity rely on 
spatial occurrence data and 
climate envelope modeling. A 
range- wide network of tree- ring 
time series data for an aridland 
pine shows that individual- scale 
responses to time- varying 
climate are opposite in sign to 
species- scale responses to spatial 
climate variation for half or more 
of the species’ distribution. 
Instead of half the distribution 
benefiting from warming, the 
entire distribution suffers with 
warming, making the trailing 
edge everywhere. Time series 
data reveal a transient risk of 
extinction, which requires 
evolutionary change of 
individual- scale climate 
tolerances for a species to persist 
(evolutionary rescue). Scale- 
dependent climate responses are 
reported for hundreds of species 
in the literature, questioning the 
climate envelope approach.
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Given the importance of climate in shaping species’ geographic distributions, climate 
change poses an existential threat to biodiversity. Climate envelope modeling, the pre-
dominant approach used to quantify this threat, presumes that individuals in populations 
respond to climate variability and change according to species- level responses inferred 
from spatial occurrence data—such that individuals at the cool edge of a species’ dis-
tribution should benefit from warming (the “leading edge”), whereas individuals at the 
warm edge should suffer (the “trailing edge”). Using 1,558 tree- ring time series of an 
aridland pine (Pinus edulis) collected at 977 locations across the species’ distribution, we 
found that trees everywhere grow less in warmer- than- average and drier- than- average 
years. Ubiquitous negative temperature sensitivity indicates that individuals across the 
entire distribution should suffer with warming—the entire distribution is a trailing edge. 
Species- level responses to spatial climate variation are opposite in sign to individual- scale 
responses to time- varying climate for approximately half the species’ distribution with 
respect to temperature and the majority of the species’ distribution with respect to 
precipitation. These findings, added to evidence from the literature for scale- dependent 
climate responses in hundreds of species, suggest that correlative, equilibrium- based 
range forecasts may fail to accurately represent how individuals in populations will be 
impacted by changing climate. A scale- dependent view of the impact of climate change 
on biodiversity highlights the transient risk of extinction hidden inside climate envelope 
forecasts and the importance of evolution in rescuing species from extinction whenever 
local climate variability and change exceeds individual- scale climate tolerances.

biodiversity | climate change | scale | species distribution modeling | time- series data

Climate is understood to be fundamental in determining species’ geographic distributions 
(1–3); thus, it is expected that climate change will exacerbate the loss of biodiversity (4, 5). 
The most prevalent approach used to predict how species will respond to climate change is 
species distribution modeling, which infers a “climate envelope”—the range of climatic 
conditions expected to allow a species to persist—based on the climatic conditions where 
the species is present (or present vs. absent). Climate envelope models are then used to project 
a species’ geographic distribution under future climate scenarios (4, 6; SI Appendix, Fig. S1 
and Biodiversity Forecasting with Occurrence Data). Based on this approach, it is estimated 
that 18 to 37% of species are “committed to extinction” by climate change (4, 6).

However, ecologists know that in addition to climate, species’ distributions are influ
enced by biotic interactions, dispersal, ecological disturbances, and evolution, among 
other processes (7, 8). Climate envelope forecasting relies on correlations between climate 
and any other range- limiting processes, and the assumption that species’ distributions are 
at equilibrium with climate (or other range- limiting processes), both with respect to model 
calibration and forward projection (3, 9–11). In reality, the processes influencing species’ 
abundances and geographic distributions operate on time scales ranging from short to 
long and spatial scales ranging from small to large (4, 8, 12–14). Near- term (transient) 
range dynamics are influenced by fast ecological processes (phenotypic plasticity and its 
demographic consequences), whereas long- term (equilibrium) range dynamics are also 
influenced by slow processes (evolution, dispersal, community sorting; 12–14). This is 
recognized in the biodiversity forecasting literature in that many studies include alternative 
scenarios of “no- dispersal” vs. “full dispersal,” i.e., to account for the fact that a species’ 
rate of dispersal may be slow relative to the rate of changing climate (12, 15).

Perhaps less well appreciated is that the correlative, equilibrium nature of climate enve
lope forecasting presumes that individuals will respond to temporal variation in climate 
according to species- level responses to spatial variation in climate (inferred from occurrence 
data). For example, with respect to changing temperature, a species’ distribution will track 
the movement of its thermal envelope poleward or upward in elevation with warming if D
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individuals in populations at the cool edge of the species’ distribu
tion respond positively to warming whereas those at the warm edge 
respond negatively (Fig. 1I). This is the leading edge- trailing edge 
paradigm for range dynamics (12, 15). In other words, climate 
envelope forecasting presumes that climate responses are invariant, 
both across biological scales (species vs. individual) and across space 
vs. time (Fig. 1, hypothesis 1; 16–19). This assumption is justified, 
with respect to biological scale, by the abundant center hypothesis 
(20) and center- periphery hypothesis (21; SI Appendix, Fig. S2 and 
“Climate Responses across Scales” ), and with respect to space vs. time 
as an example of space- for- time substitution, a widespread practice 
in ecology. These assumptions underpinning climate envelope fore
casting have been criticized both on conceptual and empirical 
grounds (9–11, 16, 18, 19, 21–23, and citations in SI Appendix, 
Table S1), yet the practice remains dominant.

An alternative possibility is that individual-  or population- level 
climate responses differ from species- level climate responses 
(Fig. 1, hypothesis 2; 24–28), i.e., that transient responses reflect
ing fast processes like individual- scale plasticity differ from equi
librium responses reflecting slow processes like evolution and 
dispersal. Instead of changing in sign from positive to negative 
across a species’ distribution (Fig. 1F), individual- level responses 
to time- varying climate may be similar throughout a species’ geo
graphic distribution if the same limiting factor constrains physi
ology and hence performance everywhere (Fig. 1 G and H). 
Consider the climatic factors that limit performance in plants: 
they include inadequate temperature and inadequate soil moisture 

(29–31). Plants found in cold places might be expected to respond 
positively to warmer- than- average conditions, within the range 
of temperature variation they have historically been exposed to and  
are therefore adapted to, whereas plants in a soil moisture- limited 
context would be expected to respond negatively to warmer- than-  
average temperatures (32, 33; see SI Appendix, Climate Responses 
across Scales—Individual Scale). Hence, all individuals in all popu
lations of a moisture- limited species should suffer with warming 
(Fig. 1J) and all individuals in all populations of a temperature- 
 limited species should benefit from warming (Fig. 1K). We describe 
predictions with respect to temperature because it is changing rel
atively predictably compared to precipitation (34), with conse
quences that include large- scale mortality events (35, 36). Parallel 
predictions apply to any other nonstationary climate variables, and 
how they might interact with one another, affecting individual 
performance. If transient vs. equilibrium responses to climate differ, 
species- level climate response curves, which result from the net 
effect of fast and slow processes influencing the geographic distri
bution, may not be predictive of how individuals within popula
tions across the distribution will respond to time- varying climate. 
The space- for- time substitution that underlies climate envelope 
forecasting may not be reliable if spatial patterns are driven by 
additional processes, operating on longer time scales, than those 
generating patterns through time.

It is important to understand which of these hypotheses better 
reflects real- world patterns of variation in individual performance, 
particularly because they lead to contrasting predictions about 
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Fig. 1.   Hypotheses about climate responses at the species vs. individual scale (A–E) and corresponding predictions about climate- growth relationships (F–H) 
and range dynamics with warming (I–K). Under hypothesis 1, species- scale climate responses, inferred from occurrence data (A), match individual- scale climate 
responses, inferred from performance data (C); under hypothesis 2, species-  and individual- scale climate responses do not match (B vs. D and E), individual- scale 
performance is either negatively sensitive to temperature variation across time and space (water- limited performance, D) or positively temperature sensitive 
(temperature- limited performance, E), with solid lines indicating the response to interannual temperature variability within its historical range, to which the 
organism is adapted, and dashed lines indicating the response to more extreme temperature variability. Panels (F–H) show the predicted sensitivity of tree 
growth- ring width to time- varying temperature (rescaled as local temperature anomalies) reflecting the local slope in panels (C–E) at warm (red) to average 
(purple) to cool (blue) locations across the species’ distribution. Panels (I–K) show three contrasting predicted responses (+/−) of individual- level performance 
to warming across species’ geographic distributions, also derived from panels (C–E), with the size of the symbol indicating the magnitude (slope) of individual- 
level sensitivity to temperature variation. A temperature- limited species may experience declining performance (−) at its low- latitude edge (panel K), if warming 
exceeds individual- scale thermal tolerances.D
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how species’ geographic distributions will be affected at near- term 
(transient) time scales by changing climate (Fig. 1 I–K). Assessing 
climate responses at the individual vs. species scale, and in 
response to spatial vs. temporal climate variation, has thus far 
been difficult because the data needs are high: long- term, annually 
resolved records of individual performance in response to climate 
variability throughout a species’ geographic distribution, in addi
tion to the occurrence data that are much more available and 
commonly used. Spatial networks of biogenic time series from 
naturally occurring individuals are a special kind of data that 
make it possible to infer the plastic capacity of genotypes to 
tolerate different conditions in different years, as those genotypes 
are currently distributed across a species’ range (37). Past empir
ical studies that have compared individual-  or population- level 
responses to climate against species- level responses instead have 
tended to focus on spatial variation in average performance with 
climate (17, 38–40) or performance measured at single point in 
time (41), not individual- scale plastic responses to time- varying 
climate, or they have been relatively limited in spatial and tem
poral scope (21, 42, 43).

Here, we evaluate climate responses across scales, where scale 
refers both to the species- level geographic distribution vs. individual 
organism, and to space vs. time. We compare a species’ occurrence 
against its individual- level performance with respect to climate and 
we investigate how individual- level performance varies with climate 
across space vs. time. We focus on a tree species because trees are 
positioned at the nexus of the biodiversity and climate crises—for
ests harbor a great deal of Earth’s biodiversity at the same time that 
they play an important role in the feedback between Earth’s terres
trial biosphere and its climate via carbon cycling (44, 45). In addi
tion, many tree species form annual growth rings that can be 
sampled to generate time series data encompassing individuals’ 
lifespans (46). Specifically, we studied Pinus edulis, a tree at the dry 
edge of the temperate coniferous forest biome that is found under 
a wide range of temperature conditions [mean annual temperature 
(MAT) of 4 to 17 °C; SI Appendix, Fig. S3]. We used a tree- ring 
collection that is more unbiased and representative of this species 
than any other available to quantify individual- level responses to 
temporal variation in climate, spatial variation in average climate 
conditions, and their interactions. These climate responses based 
on tree- ring time series data were compared to separately inferred 
species- level climate responses based on occurrence data, i.e., the 
presence vs. absence of P. edulis in forest inventory plots across its 
distribution. If climate responses are the same at the individual and 
species scale, the slope of the response to time- varying temperature 
should change in sign across P. edulis’ distribution: from positive at 
cold locations to negative at warm locations (Fig. 1F). If instead 
climate responses differ between the individual and species scale, 
the sign of the slope of the response to time- varying climate could 
be the same throughout the species’ distribution. A priori, we expect 
P. edulis’ performance (growth) to be soil moisture limited; hence, 
we expect to see lower- than- average growth in warmer- than- average 
years—a negative response to time- varying temperature (Fig. 1 D 
and G). We also considered spatial variation in the response to 
precipitation variability, and how precipitation modifies the 
response to variation in temperature, since soil moisture limitation 
is influenced by their combination.

Results

Tree- ring data confirm the a priori expectation that P. edulis’ per
formance is soil moisture- limited. Growth rings of P. edulis are wider 
in a wetter- than- average year and at wetter locations: We found 
positive effects of interannual variation in winter precipitation 

[βwinter precip = 0.2045, 95% CI = (0.1942 − 0.2149)] and monsoon 
precipitation [βmonsoon precip = 0.0451, 95% CI = (0.0348 − 0.0533)], 
as well as mean annual precipitation (MAP) on growth- ring width 
[βMAP = 0.2355, 95% CI = (0.194 − 0.2771); SI Appendix, Fig. S4]. 
In addition, year- to- year variation in fall and spring temperatures 
negatively affects growth- ring width [Fig. 2; βfall temp = −0.0723, 
95% CI = (−0.0826 − −0.0618), βspring temp = −0.0965, 95% CI = 
(−0.1076 − −0.0857)].

Of particular interest, with respect to the hypotheses and pre
dictions in Fig. 1, is how P. edulis’ responses to time- varying climate 
shift across gradients of mean annual temperature (MAT) and MAP. 
Five of the eight interactions between spatially varying MAT and 
MAP and time- varying climate predictors are significantly different 
from zero (SI Appendix, Fig. S4), but these interactions do not 
change the sign of the effect across the geographic distribution. The 
sensitivity of P. edulis’ growth to spring and fall temperature varia
bility is negative essentially everywhere, from cool to warm sites, 
and dry to wet sites (Fig. 2 A–D and SI Appendix, Fig. S5; see his
tograms of tree- level climate sensitivities in SI Appendix, Fig. S6 A 
and B). P. edulis’ model- predicted sensitivity to year- to- year precip
itation variability is also (nearly) uniformly positive (Fig. 3 A–D 
and SI Appendix, Fig. S7; see histograms in SI Appendix, Fig. S6 C 
and D). The statistically significant interaction effects do however 
indicate there is variation across P. edulis’ distribution in how sen
sitive its performance is to time- varying climate: Lower growth in 
response to a warmer- than- average spring is especially pronounced 
at the wet and warm edge of the species’ distribution (blue lines, 
Fig. 2D), and lower growth in response to a drier- than- average 
winter is especially pronounced at the dry and warm edge of the 
species’ distribution (red lines, Fig. 3D).

For five of the six climate variables, species- level climate 
response curves based on presence–absence data were very differ
ent from the individual tree- scale climate responses detected using 
tree- ring data. Probability of occurrence of P. edulis increases then 
decreases with each of the temperature variables (mean annual 
temperature, mean spring temperature, and mean fall tempera
ture), i.e., in a unimodal, symmetric pattern (Fig. 2 E–G). P. edulis’ 
occurrence in response to spatial variation in mean annual pre
cipitation and average winter precipitation peaks at relatively low 
values (dry locations) and declines across most of the range of each 
of these precipitation variables in the study domain, leading to 
right- skewed responses (Fig. 3 E and F). Only one climate response 
was qualitatively similar at the species vs.  individual scale: Both prob
ability of occurrence (Fig. 3G) and tree- scale growth (SI Appendix, 
Fig. S7) increase with monsoon precipitation. Counter to the a priori 
expectation that growth should be lower at the warm edge of the 
distribution of a soil moisture- limited species, growth increased with 
mean annual temperature across P. edulis’ distribution [βMAT = 
0.2083, 95% CI = (0.1661 – 0.2506), SI Appendix, Fig. S4], a result 
that we interpret in terms of Liebig’s Law of the Minimum 
(SI Appendix, Climate Responses and Fig. S8). That is, the sign of the 
response of individual tree- scale growth to spatial variation in tem
perature (positive) is the opposite of its response to in situ time- varying 
temperature (negative).

Discussion

This analysis of tree- ring and occurrence data for P. edulis demon
strates that its climate responses are scale dependent—different 
patterns are observed at the species vs. individual scale, and in 
response to spatial vs. temporal climate variability. Across the 
entire geographic distribution of P. edulis, trees respond negatively 
to warmer- than- average spring and fall temperatures (Fig. 2 A–D 
and SI Appendix, Fig. S5, respectively), whereas species- scale D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 N

A
T

IO
N

A
L

 A
G

R
IC

U
L

T
U

R
A

L
 L

IB
R

A
R

Y
 N

A
L

 U
SD

A
 o

n 
Ju

ne
 3

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
17

0.
14

4.
68

.2
34

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2315700121#supplementary-materials


4 of 8   https://doi.org/10.1073/pnas.2315700121 pnas.org

temperature tolerances, inferred across space from occurrence 
data, are unimodal and symmetric (Fig. 2 E–G). Further, instead 
of observing peak performance at climatically average locations 
(i.e., average MAT), average growth- ring width increases with 
MAT. Trees grow faster at warmer- than- average locations, even 
though they grow less in warmer- than- average years across the 
entire distribution. The contrast between species- level and 
individual- level responses to variation in precipitation is also 
striking: Individuals respond positively to more precipitation, 
across both time and space (Fig. 3 A–D and SI Appendix, 
Fig. S7), as would be expected for a soil moisture- limited spe
cies, whereas the species- level probability of occurrence is 
mostly a declining function of spatial variation in precipitation 
(Fig. 3 E and F).

Individual growth rate is but one part of the life cycle; hence, 
the mismatch between climate responses inferred from tree- ring 
vs. occurrence data might be caused by vital rates other than 
growth (survival, recruitment) responding to climate variability 
in a compensatory manner (“demographic compensation”; 47). 
However, demographic analyses of forest inventory data have 
shown that P. edulis’ population growth rate is lowest at warm and 
dry sites, particularly because of a negative effect of spatial varia
tion in temperature on survival, which is by far the strongest driver 
of variation in population growth rate across this species’ distri
bution (3). In addition, there is a large literature showing that 
warm drought events cause tree mortality (36, 48, 49), with 
well- documented physiological causes (cavitation, hydraulic fail
ure; 50–52). Because the response of P. edulis’ survival to both 
spatial and temporal variation in temperature is negative, and 
because the sensitivity of population growth rate to recruitment 
is so weak in a long- lived organism, demographic compensation 
is not a plausible explanation for the observed mismatch between 

the responses of individual- scale growth vs. species- scale occur
rence to climate variability.

An alternative explanation for contrasting responses of individual-  
and population- level demographic rates vs. species- level occurrence 
to climate variation is that climate is not the only factor influencing 
P. edulis’ geographic distribution. Demographic analyses have shown 
that the wet and cool limits of P. edulis’ distribution, where climatic 
conditions are good both for individual- level performance and 
population- level fitness, result from the influence of climate on veg
etation and fire regime (3), combined with the fact that P. edulis is 
fire- intolerant. With increasing mean annual precipitation and 
decreasing mean annual temperature, hence increased productivity 
of herbaceous fine fuels, P. edulis is replaced by its congener Pinus 
ponderosa, a species that is fire- tolerant (53, 54). That is, climate does 
not limit the wet and cool edge of P. edulis’ distribution directly, it 
does so indirectly through its influence on an ecological disturbance 
process (fire). Fire suppression in the 20th century and concomitant 
expansion of fire- intolerant P. edulis further demonstrates that climate 
is not the only factor shaping this species’ abundance and geographic 
distribution (3). The case of P. edulis highlights the much more general 
(and well- known) problem of causality embedded in space- for- time 
substitution and climate envelope forecasting (22, 23)—just because 
climate can be correlated with occurrence does not mean that it 
(directly) is the causal factor that determines range limits.

We have shown that in P. edulis, individual- scale climate 
responses (based on time- series data) are the opposite of species- scale 
climate responses (based on occurrence data) for approximately 
half the species’ distribution with respect to MAT (shading, Fig. 2E) 
and the majority of the distribution with respect to MAP (shading, 
Fig. 3E). The broader implications of this are troubling: The organ
ism–environment relationships that are central to forecasting the 
impact of climate change on biodiversity are scale dependent, 

Fig. 2.   Responses to temperature variation. (A–D) The model- predicted responses to spring (April–June) temperature anomalies of all 1,558 P. edulis trees in the 
dataset, at locations that vary from cool to warm [panels (A–D) show individual tree responses grouped by quantiles of mean annual temperature (MAT), averaged 
over the period 1895 to 2018], with each response colored by the mean annual precipitation (MAP) at that location, from dry (red) to wet (blue). Responses are 
plotted for a constant tree size of 20 cm. (E–G) Species- scale climate responses to spatial variation in temperature—the probability of occurrence of P. edulis 
as a function of average climate conditions at FIA plot locations. Shading in (D–F) indicates that part of the species’ climate envelope where the individual- level 
response in (A–D) is opposite in sign.
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 compromising the assumption that climate responses at the species 
scale are predictive of climate responses at the individual scale. This 
begs the question, how widespread are the patterns observed in  
P. edulis?

Previous studies of tree- ring data offer some insight, even if they 
were not designed to address this question. Canham et al. (55) found 
ubiquitous negative temperature sensitivity using >23,000 tree- ring 
time series sampled from 14 dominant tree species of temperate 
deciduous forests across the northeastern United States. Ubiquitous 
negative temperature sensitivity was also found by Klesse et al. (56), 
based on >30,000 tree- ring time series for Douglas- fir (Pseudotsuga 
menziesii), a species with a geographic distribution spanning 36 
degrees of latitude in western North America. Climate sensitivities 
consistent with soil moisture- limitation of tree growth (negative 
temperature sensitivity, positive precipitation sensitivity) were also 
found across the geographic distribution of P. ponderosa, another 
widely distributed tree of western North America (57). Northern 
hemisphere and global analyses of tree- ring data show that tree 
growth is negatively sensitive to summer temperature variability 
across the midlatitudes and positively sensitive to summer temper
ature variability at high- latitude and high- elevation sites (30, 31). In 
other words, there is a striking contrast between what is well-  
established in dendrochronology (and ecosystem ecology, earth sys
tem sciences)—that climate limitation of tree growth (and terrestrial 
ecosystem productivity) is consistent, or largely so, across broad 
geographic extents—vs. the expectation embedded in occurrence-  
based forecasting that climate limitations should switch in sign across 
every species’ distribution.

Other tree- ring studies also found contrasting responses to spatial 
vs. temporal variation in temperature as we did. Canham et al. (55) 
found that 14 species of temperate deciduous trees grow at a higher 
rate at more southerly (warmer) locations, in contrast to their 

ubiquitous negative sensitivity to interannual temperature variabil
ity. Klesse et al. (56) also found this pattern, across the very large 
distribution of Douglas- fir. Because of this switch in sign, forecasts 
made based on the relationship between time- averaged tree growth 
and spatial variation in temperature would suggest these forests 
should benefit from warming, whereas forecasts based on the rela
tionship between time- varying performance and temperature would 
suggest the opposite. A unique study of P. ponderosa demonstrated 
just this: Forecasts based on the species’ response to spatial variation 
in temperature predict increased tree growth, whereas forecasts 
made based on population- level responses to time- varying temper
ature predict reduced growth (58; and for an example from grass
lands, see ref. 59). Further, model validation via hindcasting showed 
that ponderosa pine’s observed responses to climate variability and 
change in the recent past were much better predicted by its statis
tically inferred response to time- varying temperature (58). This 
suggests forecasts of increased forest productivity based on spatial 
patterns of climate variability should be viewed with caution (e.g., 
refs. 60 and 61). The larger point is to be aware, when making 
ecological forecasts of any kind, that organism- environment rela
tionships are likely to be scale- dependent (13, 62, 63).

Beyond tree- ring time series data, there is a growing body of 
evidence of contrasting climate responses at different biological scales 
or across space vs. time, including mismatches between a species’ 
peak occurrence compared to its peak abundance, population 
growth rate, or individual- level performance, detailed in SI Appendix, 
Table S1. This evidence comes from multispecies surveys of the lit
erature as well as original studies contradicting the abundant center 
and center- periphery hypotheses (17, 21, 38–40), along with more 
detailed studies of demographic variation across space and time 
showing that individual-  and population- scale responses to climate 
variation do not match occurrence- based, species- scale climate 

A B

C D

E

F

G

Fig. 3.   Responses to precipitation variation. (A–D) The model- predicted responses to winter precipitation anomalies of all 1,558 common pinon trees in the dataset, 
at locations that vary from cool to warm [panels (A–D) show individual tree responses grouped by quantiles of mean annual temperature (MAT), averaged over 
the period 1895 to 2018], with each response colored by the mean annual precipitation (MAP) at that location, from dry (red) to wet (blue). Winter precipitation 
is the cumulative total from November of the previous year through March of the current year. Responses are plotted for a constant tree size of 20 cm. (E–G) 
Species- scale climate responses to spatial variation in precipitation—the probability of occurrence of P. edulis as a function of average climate conditions at FIA 
plot locations. Shading in (E and F) indicates that part of the species’ climate envelope where the individual- level response in (A- D) is opposite in sign.
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responses (64, 65). This emerging body of work suggests that our 
findings are not a pattern unique to a single aridland pine species.

At the same time, it should be expected that some species’ 
distributions do span conditions under which performance is neg
atively vs. positively sensitive to time- varying temperature (or 
other performance- limiting and nonstationary aspects of climate). 
While we dichotomized the possibilities in Fig. 1 for the sake of 
clarity, in fact, a continuum of patterns between these extremes is 
possible. Spatial variation in the response to interannual variation 
in temperature was found in Artemisia tridentata (a dominant 
shrub in a shrub- steppe ecosystem) based on time series data at 
131 monitoring sites across its distribution—negative responses 
at warm locations and positive responses at cold locations (66). A 
similar pattern was found with respect to some climate variables 
but not others, based on repeat censuses of 746 populations of 
wood frogs (Lithobates sylvaticus) at 27 locations across its distri
bution—a switch from positive to negative sensitivity of demo
graphic performance to interannual variation in climate (18). We 
suggest that a key knowledge gap to be filled is the characterization 
of individual-  and population- scale responses to time- varying cli
mate as opposed to species- scale “climate envelopes,” with a focus 
on the biogeography of limiting factors, to better anticipate the 
near- term impact of climate change on biodiversity.

A Critical Transition: From Near- Term to Long- Term Dynamics. 
For P. edulis and other species in which performance is consistently 
lower in warmer- than- average years, the entire distribution is a 
“trailing edge” when faced with warming: All populations should 
experience decreased performance. The risk, hidden by the correlative, 

equilibrium nature of climate envelope forecasting, is that this short- 
term (negative) response is not replaced by the long- term (positive) 
response at what the occurrence- based approach identifies as the 
“leading edge,” as illustrated in Fig. 4. Whether negative transient vs. 
positive equilibrium dynamics prevail at the “leading edge” should be 
expected to depend on the breadth of plasticity (i.e., reaction norms, 
thermal performance curves) relative to the pace of climate change, the 
pace of in situ evolution of reaction norms, and the pace of migration of 
genotypes with better- adapted reaction norms from elsewhere (Fig. 4; 
11, 13, 14, 24, 67–70). If rates of evolution and/or dispersal keep pace 
with climate change, a smooth transition from negative transient to 
positive equilibrium dynamics is possible (Fig. 4A). If evolution and/
or dispersal are slower than climate change, but not too much slower, 
there may be range contraction to leading- edge refugia, but potentially 
recovery (Fig. 4B). In P. edulis, for example, population growth rate 
is least sensitive to change in temperature and precipitation at the 
climatically benign, cool, wet (high- elevation) edge of its distribution 
(3)—i.e., the “leading edge.” There, climate change- driven decline 
should be less rapid, and there is the potential for evolutionary rescue. 
If in situ evolution and/or dispersal of better- adapted genotypes are 
too slow compared to climate change, extinction may be the outcome, 
rather than the equilibrium expectation of persistence and expansion 
at the leading edge (Fig. 4C).

We conclude that occurrence- based models can underestimate the 
threat to biodiversity posed by changing climate, in that species- scale 
climate tolerances can be a poor proxy for individual-  and population-  
scale climate responses, and fail to capture the transient risk of extinc
tion arising from the actual responses of individuals and populations 
to climate variability and change. A strong reliance in the biodiversity 
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Fig. 4.   Three possible outcomes, in response to warming, for a northern hemisphere species in which individual- level performance is negatively sensitive to 
time- varying temperature (indicated with negative symbols throughout the geographic distribution). The species is more strongly negatively impacted by warming 
toward its warm, southern (trailing) edge, indicated by the size of the symbols. The (A) best- case, (B) middle- case, and (C) worst- case scenarios differ with respect 
to how fast evolution and/or dispersal (green shading) are relative to the rate of changing climate, leading to outcomes that reflect little to strong influence of 
transient dynamics, respectively. Evolution and dispersal do not necessarily operate on the same time scale but are grouped here as “slow” processes compared 
to “fast” processes (plasticity and demography).D
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forecasting community on occurrence- based approaches may create 
a blind spot regarding the possibility that performance and suitability 
may actually decrease with changing climate at the so- called “leading 
edge” of a species’ distribution. The expectation of expansion at the 
“leading edge” can be a false one, at least in the near term, and failure 
to expand there may not be caused by dispersal limitation, rather, it 
can be limited by the evolution of individual- scale climate tolerances. 
At the same time, there may be other ways in which occurrence- based 
approaches overestimate extinction risk—for example, by overfitting 
to occurrence data using many climate predictors and very flexible 
models.

For biodiversity forecasting to improve, i.e., address potential 
under-  and overestimation of extinction risk, there is a need to char
acterize and better understand responses of individuals and popula
tions to time- varying climate. This includes, for example, expanding 
studies of thermal performance curves to encompass genotypes 
sampled across species’ distributions (26, 37, 71), quantifying how 
climate- performance relationships are modified by the intensity and 
duration of acute exposures such as heat waves (72–74), and lever
aging transplant experiments to parse the genetic vs. plastic basis of 
responses to climate variability and extremes (28, 75–77). Studies 
of demography in the wild across time and space also are a powerful 
source of information (64, 65, 78, 79), because they can reveal 
trade- offs between fitness in different parts of the life cycle (e.g., 
competitiveness and hence individual growth rate vs. stress- tolerance 
and hence survival rate) and the impact of shifting biotic interactions, 
community composition, and ecosystem processes. These data will 
provide the grounding in physiology and demography needed to 
more reliably scale the impact of climate change from individuals to 
species (33, 63, 80–84). With the accumulation of such data across 
species and environments, patterns may emerge that further facilitate 
prediction. For example, it’s been suggested that individual-  vs. 
species- scale thermal tolerances are more closely equivalent in marine 
ectotherms than terrestrial ectotherms (85), and that individual- scale 
thermal tolerances are narrow in tropical terrestrial ectotherms, 
heightening their vulnerability to climate change (86–88). In addi
tion, there is a need to better characterize rates of evolution and 
dispersal compared to changing climate, and how these interact with 
other global change drivers (e.g., land transformation and fragmen
tation), to gauge the timescales at which range dynamics may shift 
from transient, individual- scale responses to equilibrium, species- scale 
responses. Thirty years ago, Levin (89) remarked that “the problem 
of pattern and scale is the central problem in ecology.” Addressing 
this central problem in ecology is key to better assessing the risk of 
biodiversity loss posed by climate change, the disruption of ecosys
tem services associated with that loss, and acting to prevent it.

Materials and Methods

P. edulis Engelm. is a stress- tolerant pine endemic to the Colorado Plateau of 
the southwestern United States, where the climate is semiarid and continental 
(90; SI Appendix, Fig.  S3). Our study is based on tree- ring samples collected 
from 1,558 trees located in 977 plots in the U.S. Forest Service’s probabilistically 
designed Forest Inventory and Analysis (FIA) plot network, which fully encom-
passes P. edulis’ geographic distribution (91). We processed these samples to 
generate annually resolved time series of growth- ring widths following stand-
ard protocols of dendrochronology (SI Appendix, Tree- Ring Data). We then used 

Bayesian hierarchical regression to model variation in growth- ring widths as 
a function of climate variability across space and time. Climate variables were 
derived from 4- km resolution PRISM monthly data (92), i.e., aggregated to cli-
mate normals (MAT, MAP; years 1895 to 2018), which vary strictly across space, 
and time- varying seasonal climate variables (monsoon and winter precipitation, 
fall and spring temperature). The seasonal climate time series were locally scaled 
and centered; hence, they represent site- specific anomalies of precipitation and 
temperature. Tree size (stem diameter at root collar) was also included as a predic-
tor because growth- ring widths are known to change with tree size. We included 
all 2- way interactions between fixed effects, including interactions between  
spatially varying climate normals (cold vs. warm locations) and time- varying  
climate (e.g., spring temperature), which we use to distinguish between hypotheses  
1 vs. 2 of Fig. 1. Additional details about the regression modeling are available 
in SI Appendix, including Bayesian model implementation, evaluation of model 
convergence, and comparison of the fit to data of nine alternative regression 
models (SI Appendix, Table S2 and Fig. S9).

Using generalized additive models (GAMs), we quantified the probability of 
occurrence of P. edulis as a function of the same climate variables used to predict 
individual tree growth variability. We used data on the presence vs. absence of  
P. edulis derived from the FIA plot network in Arizona, Colorado, New Mexico, 
and Utah. Hence, the occurrence of P. edulis was assessed relative to the forested 
portion of the study domain (defined by FIA as 10% tree cover). We tested GAMs 
with 3, 4, and 5 knots to evaluate the influence of model flexibility on climate 
response curves (SI Appendix, Table S3). Scripts for all data analysis are found in 
a public GitHub repository (93).

Data, Materials, and Software Availability. Tree- ring time series data have 
been deposited in CyVerse (DOI: 10.25739/7c3a- z340) (91). Previously pub-
lished PRISM climate data were used in this work (92). Scripts for conducting all 
aspects of the data analysis are available in the GitHub repository (https://github.
com/dey3434/PIED- Project) (93).
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