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then identify gaps in the current systems of GHG 
accounting, and between current ambitions and 
basic forest ecology. Improved use of data in mod-
els provides a path forward to better assessment and 
anticipation of forest-based climate mitigation. We 
illustrate this with the creation of a climate-sensitive 
forestry model, using tree-ring time series data. This 
climate-sensitive forest simulator will improve plan-
ning of site-level climate mitigation activities in the 
US by providing more realistic expectations of the 
carbon sequestration potential of forests undergoing 
climate change. Our review highlights the sobering 
complexity and uncertainty surrounding forest car-
bon dynamics, along with the need to improve car-
bon accounting. If we are to expect forests to play the 
significant emissions reduction role that is currently 
planned, we should view immediate emissions reduc-
tions as critical to preserve the climate mitigation 
capacity of forest ecosystems.

Abstract  Great hope is being placed in the abil-
ity of forest ecosystems to contribute to greenhouse 
gas (GHG) emission reduction targets to limit global 
warming. Many nations plan to rely on forest-based 
climate mitigation activities to create additional 
and long-term carbon sequestration. Here, we take 
a critical look at the state of the policy and ecol-
ogy surrounding forest-based natural climate solu-
tions (NCS), with a focus on temperate forests of 
the United States (US). We first provide a high-level 
overview of carbon accounting, including key con-
cepts used in the monitoring, reporting and verifica-
tion of forest-based NCS. Second, we provide a high-
level overview of forest carbon dynamics, including 
pools and fluxes, and drivers of their change. We 
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Introduction

To avoid the negative impacts of warming above pre-
industrial levels, drastic greenhouse gas (GHG, see 
Table  1 for a list of acronyms) emission reductions 
are needed globally. This need is acknowledged with 
the commitment to limit warming between 1.5°C and 
2°C through the United Nations Framework Conven-
tion on Climate Change (UNFCCC) Paris Agree-
ment (article 2, 2015). Under this agreement, each 
Party outlines its planned emissions reductions in 
its nationally determined contribution (NDC), which 
together contribute to the global emissions reduc-
tion to limit warming. For example, the United States 
(US) - the world’s largest economy, third largest 
population, and largest cumulative emitter of carbon 
dioxide (CO2) from fossil fuels (Boden et  al. 2017; 
Fargione et al. 2018) - has set as its NDC a reduction 
of net GHG emissions by the year 2030 to 50-52% 
below its 2005 level of about 6,600 million metric 
tons (MMT) of CO2 equivalent (The United States of 

America Nationally Determined Contribution 2021). 
Limiting global warming to 2°C is exceedingly chal-
lenging, given that global mean temperature has 
already risen about 1°C over the 20th century and 
warming lags behind emissions (Hansen et al. 2011). 
It is unlikely emissions reductions alone will achieve 
this target, given the rate at which reductions are pro-
ceeding (Friedlingstein et al. 2020; Ou et al. 2021). It 
has thus become apparent that GHG emissions reduc-
tions may need to be supplemented with natural cli-
mate solutions (NCS), or carbon (C) removal from 
the atmosphere by natural sinks (National Academies 
of Sciences 2019). NCS can involve both avoided 
emissions through protection of sinks, and removal of 
GHGs from the atmosphere through the creation and/
or enhancement of existing C sinks.

Ambition and enthusiasm for NCS is high. For 
example, a recent analysis from Oxford Univer-
sity’s Nature-based Solutions Initiative estimated 
that global implementation of NCS could contrib-
ute the equivalent of 10,000 MMT of reduced CO2 
emissions per year through protecting, restoring and 
managing sinks. This would entail preventing 270 
million hectares (Mha) of deforestation and restor-
ing 678 Mha of ecosystems, in addition to protecting 
and improving C sinks by improving management on 

Table 1   Acronyms, in 
alphabetical order. CSP Carbon storage potential

ESM Earth System Models
FIA Forest Inventory and Analysis
FLM Forest landscape models
FREL Forest reference emission level
FRL Forest reference level
FVS Forest Vegetation Simulator
GHG Greenhouse gas
HRV Historical range of variability
IPCC Intergovernmental Panel on Climate Change
LSM Land surface model
MMT Million metric tons
MRV Monitoring, reporting, and verification
NCS Natural climate solutions, Nature-based climate solutions
NDC Nationally determined contribution
NFMS National forest monitoring system
NGHGI National greenhouse gas inventory
REDD+ Reducing Emissions from Deforestation and Degradation
SOC Soil organic carbon
UNFCCC​ United Nations Framework Convention on Climate Change
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~2.5 billion hectares of land (Girardin et  al. 2021). 
Forests in particular, the largest C sink in the terres-
trial biosphere (Pan et  al. 2011a), provide a quarter 
of the total planned emission reductions across all 
countries’ NDCs (Grassi 2017). That is, countries are 
planning to rely significantly on forests to meet their 
emission reductions. Focusing on the US (the larg-
est cumulative contributor to the problem), it has the 
fourth largest forested area in the world and its for-
ests offset approximately 11% of the country’s emis-
sions in 2019; the US plans to meet its target partly 
by enhancing its forest C sink and reducing emissions 
from forests through protection and management, 
including investing in activities to increase resilience 
and restore degraded forest lands (The United States 
of America Nationally Determined Contribution 
2021). Fargione et al. (2018) estimated the maximum 
climate mitigation potential of US forest-based NCS 
in 2025 to be over 650 MMT CO2 equivalent, which 
is ~10% of the US’s 2005-level GHG emissions.

To avoid over-reliance on NCS relative to their 
potential, enthusiasm for forest-based NCS needs to 
be tempered in the light of scientific uncertainties 
that surround the projection of future forest ecosys-
tem C emissions and sinks. The complex interactions 
between drivers of terrestrial C uptake are poorly 
characterized, leading to substantial uncertainty in 
the magnitude and direction of the future terrestrial C 
sink (Arora et al. 2020; Gatti et al. 2021; Koven et al. 
2021). As forest-based NCS initiatives ramp up glob-
ally, it is timely to think carefully about how forest C 
accounting is conducted, the protocols and incentives 
as they are currently laid out, and how complexities 
and uncertainties in forest C dynamics can complicate 
the assessment and anticipation of forest-based cli-
mate mitigation.

Here we consider these challenges from both a pol-
icy and ecology perspective, with a focus on temper-
ate forests and the US. We begin with an overview of 
forest-based C accounting, with a focus on key con-
cepts concerning forest C across time and space. We 
then highlight areas of scientific uncertainty and com-
plexity about forest C stocks and fluxes. We take a 
first step in bridging these perspectives by identifying 
the gaps that arise between systems of accounting at 
different scales, as well as between current ambitions 
and the scientific uncertainties and complexities of 
forest C dynamics. We then describe how models and 
data might be used to set more realistic expectations 

of forest-based NCS. To do so, we highlight a spe-
cific example of a new data source used to improve 
process representation in an empirical forestry model, 
which can be used to plan mitigation activities in the 
US under changing climate. We end by identifying 
opportunities to improve the estimation and expecta-
tion of forest-based climate mitigation.

Carbon accounting ‑ policies, procedures, 
and concepts

Parties to the UNFCCC are expected to regularly 
submit economy-wide inventories of GHG emis-
sions and removals, using country-specific systems 
of monitoring, reporting, and verification (MRV) that 
follow guidelines set forth by the Intergovernmental 
Panel on Climate Change (IPCC 2006, 2019a). As a 
part of this process, C estimation within a national 
greenhouse gas inventory (NGHGI) assesses trends 
in emissions and removals from the land sector, often 
relying on data from a national forest monitoring sys-
tem (NFMS). For example, in the US, these data are 
collected and maintained by the USDA Forest Ser-
vice’s Forest Inventory and Analysis (FIA) program 
(Domke et al. 2021), and the US Environmental Pro-
tection Agency is then responsible for GHG reporting 
to the UNFCCC (U.S. EPA 2021). In addition, global 
‘stocktakes’ are planned (the first of which is taking 
place 2021-2023), which will assess collective pro-
gress toward emissions reductions (Paris Agreement 
article 2, 2016; Friedlingstein et al. 2020). These will 
be periodically reported to the UNFCCC to inform 
new policy, including updating ambitions within 
NDCs. Independent of UNFCCC reporting are state 
or provincial (e.g., California Air Resources Board 
2021) and entity-level (Eve et  al. 2014) estimation 
and project-level activities which are implemented 
through regulatory (e.g., California Air Resources 
Board 2015) or voluntary C offset (e.g., Verra 2021) 
programs that have independently developed account-
ing standards.

An additional mechanism under the UNFCCC is 
known as REDD+ (Reducing Emissions from Defor-
estation and Degradation, conservation and enhance-
ment of forest C stocks, and sustainable forest man-
agement, Paris Agreement Article 5, 2015), through 
which developing countries can receive results-based 
payments for forest-based mitigation activities that 
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avoid emissions or remove atmospheric GHG emis-
sions, and contribute to NDCs. Several terms defined 
under the auspices of REDD+, namely additionality, 
permanence, reversal, leakage, and safeguards (Voigt 
and Ferreira 2015), are particularly useful in thinking 
about forest C accounting across time and space. The 
REDD+ standard is that GHG mitigation activities 
should lead to additional C removal beyond a baseline 
(additionality) that is not counteracted by increased 
forest-based emissions elsewhere on the landscape 
(leakage), is stored over a defined time frame (per-
manence) and not reemitted (reversal), while also 
protecting communities and biodiversity (safeguards). 
We describe each of these terms in detail below and 
illustrate additionality, permanence, reversal, and 
leakage in Box 1.

Additionality refers to the additional amount of C 
a project sequesters above or beyond a forest refer-
ence emission level (FREL) or forest reference level 
(FRL). This FRL sets the baseline of C flux for a pro-
ject area and is often based on data from the recent 
past, derived from a national monitoring system. 
The FRL is projected forward in time and compared 
against results of mitigation activities, to quantify the 
additional C stored or sequestered or emission reduc-
tions (Box  1, Panel 2A). For example, Brazil esti-
mated mean emissions from gross deforestation in the 
Amazon from 1996-2005 as its FRL, to then calcu-
late emission reductions over the period 2006-2010 
(Brazil 2018). Additionality is achieved if mitigation 
activities result in greater C stock than the expected 
trajectory (e.g., a decreased rate of deforestation over 
the project period).

Permanence requires that the mitigation action 
leads to long-term (~100 years, Nickerson et  al. 
2019) storage of additional C or “transformational 
change”, i.e., that drivers of emissions or barriers to 
enhancement of C stocks are removed (Box 1, Panel 
2A; Federici et  al. 2018). Permanence is influenced 
by the residence time of C in pools, which is in turn 
influenced by management actions and disturbances, 
among other drivers (Babst et al. 2020; Brienen et al. 
2020).

In a reversal, the additional (and potentially base-
line) C is removed from the forest system and emit-
ted into the atmosphere, through, for example, dis-
turbances, drought-induced mortality events, release 
of soil C, etc. (Box  1, Panel 2A). Reversals can be 
categorized as avoidable or unavoidable in estimating 

emission reductions or C credits, where drivers are 
either anthropogenic or natural, respectively. In some 
cases, local-level projects are not penalized for una-
voidable reversals (e.g., fires or insects), but can 
instead draw from a common buffer pool, which acts 
as insurance against forest C reversal (Anderegg et al. 
2020; Marland et al. 2017).

While permanence and reversal risk protocols con-
cern unwanted or unintended emissions of forest C 
over time, leakage concerns unwanted or unintended 
emissions of forest C across space, e.g., activities 
within the project area leading to forest C emissions 
outside the project area (Box  1, Panel 1). The abil-
ity to assess leakage depends on the scale at which 
C accounting is occurring. Local-level projects are 
inherently prone to the failure to account for the influ-
ence of large-scale socioeconomic processes (i.e., 
market drivers), leading to the potential for displaced 
emissions or double-counting of emission removals at 
national in addition to local scales. For this reason, C 
accounting must seek to integrate activities from local 
to national levels (Lee et al. 2018).

Finally, the REDD+ framework implemented safe-
guards to attempt to ensure that projects aimed at 
sustainable C drawdown take action towards the risk 
of reversal and reduce the displacement of emissions 
(i.e., leakage) as well as provide co-benefits to local 
communities (Decision 17/CP.21). These co-benefits 
are defined in terms of the UN’s Sustainable Devel-
opment Goals, including ending poverty, promoting 
gender equality, and developing sustainable consump-
tion and production practices. Safeguards are vital to 
ensure that C drawdown projects take into account 
the livelihoods and practices of indigenous peoples 
and local communities and their interdependence on 
forests, and do not degrade the social and environ-
mental benefits derived from forests.

These standards, most of which are shared across 
systems of accounting, provide a legal and linguis-
tic framework to evaluate the success or failure of 
mitigation activities aimed at sequestering C in eco-
systems, although the policy for C markets is young 
and rapidly changing. Indeed, one outcome of the 
26th annual Conference of the Parties (COP26) in 
Glasgow was to finalize regulations surrounding the 
emerging international C market. As these C account-
ing systems evolve, it is important to fully consider 
forest C dynamics, as we describe below, which will 
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become increasingly important in validating and veri-
fying these standards.

Forest carbon dynamics ‑ pools, fluxes, and drivers

From a forest-centered perspective, the land-atmos-
phere C flux is determined by stocks and fluxes in 
and between forest C pools, here described in terms 
of the five forest C pools delineated by the IPCC 
(aboveground, belowground, deadwood, litter, soil; 
IPCC 2006), along with a wood products pool and 
the C pools of other (non-forest) land use categories 
(Fig.  1). C in the atmosphere is taken up by living 
trees through photosynthesis and allocated to primary 
and secondary metabolism as well as to aboveground 
(i.e., leaves and stems) and belowground (i.e., roots) 
biomass. Mortality and turnover of live biomass 
transfers C to the dead organic matter pools (i.e., 
deadwood, litter), which decomposes and enters the 
soil C pool. C also enters the soil pool through exu-
dates from roots, which can be as much as 40-60% of 
total photosynthate (Silva and Lambers 2021; Simard 

and Durall 2004), and are in turn consumed by soil 
microorganisms, passing into the soil food web. C 
leaves a forest system and returns to the atmosphere 
through respiration (autotrophic and heterotrophic) 
or combustion. C can also be removed from a for-
est through harvest, and thus transferred to a wood 
products C pool. The rate at which harvested forest 
C is emitted back into the atmosphere varies tremen-
dously, depending on its fate, for example, as biofuel, 
building materials, or in a landfill (Fahey et al. 2010). 
Further, C may leave a forest stand laterally, trans-
ported via water (runoff and rivers, Tank et al. 2018). 
Finally, C in forested systems can be transferred to or 
from non-forested systems through deforestation vs. 
afforestation or reforestation, respectively.

A great deal of complexity underlies this sim-
ple characterization of forest ecosystem C dynamics 
and its impact on the atmosphere, as illustrated by 
three scenarios of change in C stock through time in 
Box 1. Both natural and anthropogenic drivers influ-
ence C pools and fluxes, and it is difficult to disen-
tangle them and attribute emissions or removals to 
one or the other. Below we detail these natural and 

Fig. 1   Forest C cycling. There are C stocks (boxes) and fluxes 
(blue arrows) within a forest system (green box), includ-
ing the five IPCC forest C pools (i.e., aboveground biomass, 
belowground biomass, deadwood, litter, and soil), as well as 
fluxes between a forest system and other C pools (grey boxes), 

including wood products, the atmosphere, and non-forested 
land (yellow box). Uncertainty in the estimation of stocks and 
the rate of fluxes between C pools can be influenced by distur-
bance processes, management, and/or changing climate
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anthropogenic drivers of forest C stocks and fluxes 
across space and time, then consider how they 

interact. Lastly, we discuss additional significant sci-
entific uncertainties in forest C dynamics.
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The magnitude and geographic distribution of for-
est C fluxes and stocks are shaped by several natural 
factors, including climate, topography, edaphic fea-
tures, and eco-evolutionary processes. In the US, for 
example, the rate of C sequestration (flux) is high in 
forests of the US southeast, where it is both mesic and 

warm, and forest C accumulation (stock) is high in 
(old-growth) forests of the Pacific Northwest, where 
it is mesic and cool. In 2018, US forests of the South 
were estimated to have almost 55,000 MMT CO2 
equivalent stock and 316 MMT CO2 equivalent flux 
(i.e., net biomass production), while US forests of the 
Pacific coast were estimated to have almost 69,000 
MMT CO2 equivalent stock and 112 MMT CO2 
equivalent flux (Domke et  al. 2022). That is, varia-
tion in natural processes, including climate, leads to 
predictable patterns across space (Nave et al. 2021a; 
Wiesmeier et  al. 2019). Another trend is that with 
increasing latitude and decreasing temperature, the 
magnitude of the forest soil C pool increases: for-
est soil C represents the majority of forest ecosys-
tem C stocks in temperate and boreal systems, mak-
ing up an estimated 55-60% and 60-85% of the total 
C stock, respectively (Domke et  al. 2017; Kaarakka 
et  al. 2021). Globally, the soils of temperate and 
boreal forests were estimated to store about 208,000 
and 640,000 MMT CO2 equivalent, respectively (Pan 
et al. 2011a).

Equilibrium carbon stocks of ecosystems are deter-
mined by their productivity and the overall rate of 
carbon turnover. The carbon turnover time of woody 
vegetation is dominated by the mortality rate. Tree 
mortality is often characterized as being the sum of 
‘background’ mortality - the expected mortality rate 
resulting from the processes of self-thinning during 
forest succession as well as senescence of large or 
old trees - and disturbance processes. Natural forest 
disturbance processes, i.e., tree mortality caused by 
fires, insect outbreaks, and drought or storm events, 
influence forest C dynamics across a range of time-
scales (Axelson et  al. 2009; Falk et  al. 2007; Kurz 
et al. 2008; Lynch 2012; Swetnam and Lynch 1993; 
Zhao et  al. 2021). These disturbance processes vary 
in terms of frequency and severity in a manner that is 
characteristic of each vegetation type, hence climate, 
along with influences of topography and soil. That is, 
forest disturbances occur on return intervals from sev-
eral years (fire in some ponderosa pine forests of the 
western US and longleaf pine forests of the US south-
east) to several decades (spruce budworm in boreal 
forests of Canada) to over a millennium (fire in Doug-
las-fir temperate rainforests), with frequency often 
inversely related to severity (Keeley et al. 2009; Ste-
phens et al. 2013; Volney and Fleming 2000). Differ-
ent forest types are thus characterized by disturbances 

Box  1: Key considerations in forest C accounting across 
space and time   Panel 1 illustrates three key points about for-
est-based NCS across space. First, REDD+ standards mandate 
that mitigation activities account for leakage. For example, if 
emissions from deforestation are avoided through protection 
of one forest stand, demand for wood products should not be 
transferred to another forest stand. Second, mitigation activi-
ties should account for spatially heterogeneous and contagious 
disturbance processes that transfer C from the forest to the 
atmosphere. Third, a diversity of forest-based climate mitiga-
tion activities can be employed across space, including forest 
protection, plantation-style forestry, and ecological forestry. 
Panel 2 illustrates forest C dynamics through time with impli-
cations for forest-based NCS. a) A monitoring, reporting, and 
verification (MRV) system estimates baseline C storage (i.e., a 
forest reference level; FRL), which is then projected forward 
in time and used to assess additionality of a climate mitigation 
action. In B-D, three scenarios of change in C stock through 
time are illustrated, with recovery from natural and anthropo-
genic disturbances (solid lines), and how these legacies interact 
with alternative management (or no management) scenarios 
(dashed lines) and novel conditions, such as changing climate 
(dotted lines). b) Some disturbance-prone forests are at risk of 
reaching a tipping point under changing climate, but ecologi-
cal management may help alleviate these vulnerabilities. For 
example, in the Southwestern US, suppression of fire in forests 
historically characterized by a high frequency-low severity fire 
regime has led to overstocked forests. When fire does occur, it 
can be of uncharacteristically high severity (stand-replacing), 
leading to a shift to a non-forested state. Thinning treatments 
have been proposed as a management technique to increase 
resilience. c) Afforestation or reforestation has been observed 
with recovery from past land uses (e.g., in the Eastern US) 
and is proposed as a means to an enhanced forest C sink. We 
show two contrasting forest management strategies aimed at 
climate change mitigation, maximizing C stock vs. C flux. In 
the former, these forests would be allowed to return to a fully 
stocked state, i.e., reach their carbon storage potential (CSP), 
although that CSP may decline with changing climate. Alter-
natively, they could be managed for rapid biomass production 
with short rotation cycles, i.e., plantation-style forestry, or with 
longer rotation cycles, i.e., improved forest management. d) 
Old-growth forest stands, especially in the temperate rainfor-
est zone, have exceptionally high C stocks. These forests could 
be protected or these stands could be deforested for timber 
resources, but recovery to CSP would take centuries. Models 
can supplement MRV systems to broaden the temporal depth 
by hindcasting to explore HRV and legacy effects, and by fore-
casting to explore alternative mitigation actions, novel condi-
tions under changing climate, and feedbacks with the climate 
system. Further, incoming data from MRV systems can be 
used to improve models.

◂
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that are expected to occur within a historical range 
of variability (HRV) in frequency and severity (Jack-
son 2012; Swetnam et al. 1999). In addition to their 
effects on aboveground C, natural disturbances may 
also directly (e.g., consumption of the O horizon dur-
ing wildfire, Reddy et  al. 2015) and indirectly (e.g., 
microbial soil organic C transformations following 
wildfire, Knelman et  al. 2017) impact forest soil C, 
with changes often varying with soil depth (Berry-
man et  al. 2020; González-Pérez et  al. 2004; Nave 
et  al. 2011; Pellegrini et  al. 2018). While fire gen-
erally has a negative effect on soil organic carbon 
(SOC) storage, the magnitude of the effect decreases 
with increasing soil depth, and at greater depths (e.g., 
E, B, C horizons) SOC stocks may experience a net 
increase (Nave et  al. 2021b). Recovery from these 
disturbances can play out over long time scales, from 
decades to centuries, leaving a spatial signature on 
forest C stocks and fluxes.

In addition to natural disturbances, human uses 
of the land have large impacts on forest C dynamics 
(Fitts et  al. 2021). Indeed, agriculture, forestry, and 
other land use activities contributed ~23% of total 
global human-caused GHG emissions over the period 
2007-2016 (12,000 ± 2,900 MMT CO2 equivalent 
per year, IPCC 2019b). In the US, forest converted 
to non-forest has made up the largest source of emis-
sions from forested land since 1990, amounting to 
125.3 MMT CO2 equivalent in 2019, with the great-
est cause being loss of forested land to settlements 
(62.9 MMT CO2 equivalent in 2019; Domke et  al. 
2021). At the same time, afforestation across the east-
ern US, associated with the abandonment of agricul-
tural fields in the wake of the Industrial Revolution, 
made this region a strong C sink over the last 100 
years (Box 1, Panel 2C; Birdsey et al. 2006), contrib-
uting to a large US C sink of about 750 MMT CO2 
equivalent per year, though the strength of this sink 
is thought to have been declining in the later half of 
the 20th century with forest maturation (Birdsey et al. 
2019). Globally, it is estimated that forest regrowth, 
including from past human uses (i.e., transient recov-
ery to carbon storage potential [CSP], or C carrying 
capacity), makes up a substantial fraction of the forest 
C sink (4,767 MMT CO2 equivalent per year, 2001-
2010; Pugh et  al. 2019). In addition to this passive 
forest recovery, active forest management with the 
goal of sequestering C is recognized as a NCS, i.e., 
improved forest management (Fargione et  al. 2018; 

Griscom et al. 2017; Kaarakka et al. 2021; Putz et al. 
2008). For example, extended rotations in plantation 
forests (Box 1, Panel 2C) lead to higher accumulated 
C (Kaarakka et al. 2021) and thinning treatments can 
lead to more resistant and resilient forest stands in the 
long-term (Hurteau et al. 2016; Stoddard et al. 2021). 
The effect of forest management on at- and below-
ground C (litter, soil) receives less attention, but a 
review of 112 studies showed that harvesting activi-
ties generally reduce soil C, in a manner that varies 
considerably with soil depth (James and Harrison 
2016). In particular, traditional post-harvest activities 
associated with site preparation for replanting (clear-
ing and burning residual vegetation) usher C from the 
land to the atmosphere. In contrast, improved prac-
tices with respect to forest soil C can contribute to 
NCS: the topsoil of lands currently being reforested 
in the US have the potential to sequester over 7,000 
MMT CO2 equivalent within a century (Nave et  al. 
2018). Overall, the effect of management on forest 
soil C depends on the intensity of the management 
action (e.g., clearcutting vs thinning), the forest type 
(Nave et  al. 2010), and the recovery stage (Zhang 
et al. 2018).

Climate change itself, along with its root cause, 
the increased concentration of CO2 in the atmos-
phere, are anthropogenic drivers of change in forest 
ecosystem C dynamics. Decades of research have 
generated several relatively robust high-level predic-
tions about their effects on ecosystem C dynamics, 
including 1), that increased atmospheric CO2 leads 
to increased rates of C sequestration in some forest 
ecosystems (Walker et al. 2020); 2) but that the ferti-
lizing effect of increased atmospheric CO2 on terres-
trial C storage is likely limited by nutrient availabil-
ity (Davies-Barnard et al. 2020; de Vries et al. 2014; 
Finzi et  al. 2006; Hungate et  al. 2003; Norby et  al. 
2005) or drought stress (Allen et  al. 2015; Williams 
et al. 2013; Xu et al. 2019); 3) and that changes in cli-
mate will likely lead to increased rates of tree mortal-
ity that will reduce C turnover times (Anderegg et al. 
2020; McDowell et  al. 2016; McDowell and Allen 
2015; Williams et  al. 2013); 4) and finally that the 
growing weight of evidence documents the sensitivity 
of SOC to global change drivers (Karhu et al. 2010; 
Knorr et al. 2005; Wang et al. 2019), particularly in 
the northern circumpolar region where a substantial 
proportion of the global SOC is stored (Jackson et al. 
2017), with higher rates of soil microbial activity, 
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including decomposition and respiration, with warm-
ing temperatures (Koven et al. 2017; Wu et al. 2018). 
The overall future C balance of the terrestrial bio-
sphere is generally therefore considered to be a bal-
ance between the opposing forces of the first against 
the latter three (Arora et al. 2020; Friedlingstein et al. 
2014; Koven et al. 2020).

Natural drivers can interact with direct anthropo-
genic drivers, such as land use or land management, 
as well as indirect anthropogenic drivers, such as 
changing climate, in important ways (Earles et  al. 
2014). For example, in the western US, a combina-
tion of increased fire risk with climate change (drier 
fuels, longer fire season, and more extreme condi-
tions; Abatzoglou and Williams 2016; Anderegg 
et  al. 2020; Goodwin et  al. 2020; Westerling 2016; 
Williams et  al. 2013), and long-term fire suppres-
sion (Box  1, panel 2B; Brookes et  al. 2021, Steel 
et  al. 2015) have caused certain regions to switch 
from a C sink to a C source in the last two decades: 
the southwestern US became a source of 114 MMT 
CO2 equivalent over the period 1990-2011, mostly 
because of fire (Birdsey et al. 2019). And though the 
area burned across the western US has been increas-
ing over the last few decades (Domke et  al. 2021), 
a large fire “debt” still exists (Barrett et  al. 1997; 
Goodwin et al. 2020; Hagmann et al. 2021; Murphy 
et  al. 2018; Stephens et  al. 2007), perpetuating the 
fuel build-up problem. Climate change is expected to 
increase the frequency, severity, and extent of natu-
ral forest disturbance processes (Becknell et al. 2015; 
Koontz et al. 2021; Krawchuk et al. 2009; Millar and 
Stephenson 2015; Seidl et al. 2017; Sommerfeld et al. 
2018), but exactly how much and how is not well 
understood (Merganičová et  al. 2019). Forests could 
reach a tipping point, where large-scale degrada-
tion (i.e., mortality and loss of resilience) caused by 
uncharacteristic disturbances (e.g., drought, fire, bark 
beetles) could potentially lead to a permanent shift to 
non-forest (Box 1, panel 2B; Barton and Poulos 2018; 
Falk 2013; Millar and Stephenson 2015; Miller et al. 
2018; Serra-Diaz et  al. 2018). Thinning, prescribed 
burns, and other adaptive management strategies 
can help to avoid or moderate the effects of tipping 
points that result in catastrophic loss of C from for-
ests (Box 1, panel 2B; Agee and Skinner 2005; Hess-
burg et al. 2021; McDowell et al. 2016; North et al. 
2015; Walker et  al. 2018). Indigenous communities 
have been managing these ecosystems for millenia 

through, for example, intentional burning practices 
(Crawford et  al. 2015; Trauernicht et  al. 2015), pro-
viding a historical perspective to guide contemporary 
management (Roos et  al. 2021). While uncertainties 
remain about what and how much management is 
needed to reduce the risk of uncharacteristic distur-
bance under a changing climate and where manage-
ment efforts should be prioritized, combining western 
science and Indigenous knowledge systems is key to 
filling this gap (Jessen et al. 2021; Levis et al. 2020; 
Prichard et al. 2021).

In the tropics, deforestation, large-scale fire dis-
turbances, and climate changes are also thought to be 
ongoing threats that could push forests past a tipping 
point, destabilizing the hydroclimatic feedbacks that 
maintain Amazon rainforest and other tropical forest 
areas (Lovejoy and Nobre 2018; Staal et al. 2018). By 
some estimates, deforestation of the Amazon basin 
has reached 17% of the original forested area (Love-
joy and Nobre 2019), and these land-use changes 
combined with climate change have altered regional 
climate (Sampaio et  al. 2007), potentially slowing 
forest regrowth in secondary forests (Elias et al. 2020) 
and making the Amazon region a net source of C to 
the atmosphere (Brando et al. 2020; Gatti et al. 2021).

Finally, complex feedbacks between the biosphere 
and the climate system may lead to surprising out-
comes. Experiments with coupled atmospheric and 
Earth system models (ESM) have suggested that 
increases in forest cover, intended to mitigate climate 
change, can lead to counterproductive responses of 
the climate system (Bonan 2008). These can be medi-
ated via changes in albedo (Mykleby et  al. 2017; 
Swann et al. 2010), in surface energy balance (Luys-
saert et al. 2018), and cloud feedbacks (Laguë et al. 
2021). ‘Teleconnections’, where land cover changes 
in one region affect climate patterns in another, are 
also commonly predicted by models, suggesting 
another means through which intended climate miti-
gation from increased forest cover might be negated 
(Koch et al. 2021; Swann et al. 2012). These complex 
effects, effectively a form of “leakage,” are highly 
relevant as humanity considers forest-based NCS 
on a massive scale. However, these model-predicted 
effects are difficult to distengle in standard ESM 
simulations, making it challenging to attribute such 
teleconnections to specific land use changes (Laguë 
et  al. 2019). Simulations aimed at illustrating the 
impacts of a particular land use change have typically 
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been very idealized (Duveiller et al. 2018; Koch et al. 
2021), or have been implementations of global land 
use reconstructions that modify many components 
of the land surface simultaneously (Lawrence et  al. 
2016; Pongratz et  al. 2010; Tebaldi et  al. 2021). In 
sum, there are persistent and systemic difficulties in 
robustly projecting the future dynamics of the numer-
ous interlinked systems - hydrological, energetic, bio-
geochemical, ecological - that determine ecosystem C 
balance under a non-stationary climate.

Mind the gap (between policy and ecology)

Successful forest-based climate mitigation will 
require both better systems of C accounting and 
policies that are cognizant of fundamental trade-offs 
in forest ecosystem C dynamics and the provision-
ing of other forest ecosystem services. Here we first 
highlight some of the gaps in our current system(s) 
of C accounting, followed by a second set of gaps 
between our scientific understanding of forest ecosys-
tems vs. the policy surrounding forest-based climate 
mitigation.

Gaps in accounting

Forest-based NCS are employed at different scales 
(global, national, local) with associated standards for 
accounting (estimation of emission reductions and 
removals), leading to inconsistencies between them. 
For example, the global stocktake and NGHGIs each 
have different mandates with respect to estimating 
anthropogenic land flux and assessing the impact of 
changes in policy or management on C storage. As 
a result, the magnitude of the difference between 
the estimates produced by these two procedures is 
substantial: ~10% of total anthropogenic emissions 
(Grassi et  al. 2018a, 2021). The global stocktake is 
expected to use a top-down process similar to the 
Global Carbon Budget approach (Friedlingstein et al. 
2020), which attempts to balance estimated emissions 
from the land and energy sectors with observations of 
atmospheric CO2 as well as modeled estimates of the 
ocean and land sinks. This global accounting process 
includes emissions and removals from all lands - in 
effect, what the atmosphere “sees”. In contrast, NGH-
GIs, which are compiled following IPCC guidelines 
(IPCC 2006, 2019a) for UNFCCC reporting, assess 

the anthropogenic land flux by estimating emissions 
and removals only on managed lands - those directly 
influenced by human activities (e.g., harvesting, oil 
and gas prospecting, fire management). Hence emis-
sions from unmanaged lands, such as fires in boreal 
forests, do not enter in NGHGI estimates. Further, 
because it is so difficult to disentangle natural from 
anthropogenic drivers of forest productivity, current 
IPCC guidelines allow natural removals (e.g., due 
to baseline forest C sequestration) from managed 
forested lands to be counted towards net emissions 
in NGHGIs (though some countries have applied 
methods for disentangling natural and anthropo-
genic effects on managed lands; Kurz et  al. 2018). 
In other words, the standard of additionality applied 
to REDD+ projects is not applied to national-scale 
C accounting. In addition, the area of land consid-
ered managed, and hence included in a NGHGI can 
change, resulting in substantial changes in the esti-
mates of emissions and removals. In the US, the man-
aged forested land area increased by 24.5 M ha in 
interior Alaska as of 2019 (US EPA 2019), resulting 
in an increase both in the estimated US forest land C 
stocks (31,548 MMT CO2 equivalent, primarily from 
soil C) and in the interannual variability in C stock 
changes (primarily due to wildfire). There is some 
concern that without transparent reporting (i.e., why 
more area is included) it is possible to make apparent 
progress towards targets by classifying more forested 
land as managed.

Accounting is also often incomplete with respect 
to important components of the C cycle, in particu-
lar, soil C. At local scales, accounting of all five IPCC 
forest C pools is often required by voluntary market 
standards, and estimates are easier to generate at a 
small scale. However, at national scales, certain pools 
can be excluded if they are considered not important 
(Decision 12/CP.17), so most countries do not quan-
tify belowground forest C pools (FAO 2019; Yanai 
et  al. 2020). This is problematic because the soil C 
pool is in fact the largest terrestrial organic C pool on 
Earth (Jackson et  al. 2017), at the same time that it 
is poorly quantified or constrained, both because of a 
lack of data, especially at greater soil depths (Gross 
and Harrison 2019; James and Harrison 2016), and a 
poor understanding of the mechanisms driving its flux 
(Terrer et al. 2021; Todd-Brown et al. 2014). Recent 
efforts to better quantify US forest soil C adjusted the 
estimate upwards over 4,000 MMT CO2 equivalent, 
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or an increase from 44% to 56% of total forest eco-
system C (Domke et  al. 2017). To avoid climati-
cally important discrepancies between the intended 
and actual impacts of NCS, accounting should be 
complete.

Another issue concerning systems of C accounting 
is the timeframe and spatial scale used to determine 
baselines of forest C storage, or FRL. For example, 
if the FRL is 1990, but this follows ~100 years of 
fire interruption in a forest system characterized by a 
high frequency-low severity fire regime, then (over-
stocked) forest structure and composition in 1990 is 
by no means a good ’baseline’ to compare against 
(Box  1, panel 2B). In addition, MRV systems typi-
cally have shallow temporal depth and hence may 
miss natural long-term processes, such as species suc-
cession and disturbance regimes, when setting base-
lines of C stock and flux, leading to poor assessment 
of additionality. There are also problems associated 
with establishing a FRL at very small and very large 
spatial scales. A local-level estimate of FRL may 
miss heterogeneous landscape processes (Seidl et al. 
2020), whereas a national or large regional estimate 
may average this heterogeneity, making it difficult 
to attribute baseline C flux to, for example, land-use 
change vs. demography (Hoover and Smith 2021). 
Forest disturbance processes in particular make it 
necessary to think about the establishment of a FRL 
across both space and time. At large spatial extents, 
stand-replacing disturbance processes should gen-
erate a distribution of forest age class (Turner et  al. 
2001; Windmuller-Campione et  al. 2021). Young, 
recently disturbed forest stands grow into older for-
est stands, which become increasingly susceptible to 
large disturbances (e.g., wildfire or insect outbreaks) 
that will return them to the young forest side of the 
age distribution. Using this distribution of forest age 
class, or more generally a metric of stand structure, 
for forests characterized by stand-replacing distur-
bance processes would improve the assessment of 
what is attainable, in terms of expected forest C stor-
age (Pan et al. 2011b). Indeed, the expected forest age 
class distribution could be used to estimate how much 
of a buffer is needed. Finally, current protocols to 
estimate a FRL operate in the absence of any consid-
eration of how ecosystem and global C balance will 
be affected by direct, indirect, or interaction effects of 
changing climate and/or atmospheric CO2 concentra-
tions (Friedlingstein et al. 2014; Seidl et al. 2017).

To better anticipate the potential for forest-based 
climate mitigation and make progress towards targets, 
estimates of baseline C storage must incorporate sci-
entific understanding of forest C dynamics over space 
and time, including the impacts of disturbance pro-
cesses, legacy effects of human land uses, and their 
interaction with changing climate (Anderegg et  al. 
2020; Grassi et  al. 2018b). This is not to say that 
forest-based climate mitigation activities should only 
be performed when accurate baselines are achieved; 
instead, in planning, policymakers and practitioners 
need to be cognizant of the implications of the time-
frame and spatial scale used in estimating the FRL.

Uncertainty surrounding baseline forest C storage 
is also caused by the process of estimation or scal-
ing from observations. Measurements of trees are 
scaled to whole-tree biomass using allometric equa-
tions, then summed across trees to estimate plot-level 
biomass, and then scaled up to national biomass esti-
mates. Uncertainty or variation in these allometric 
equations is often underestimated, and because they 
are power-law relationships, a small amount of error 
can generate an enormous amount of uncertainty sur-
rounding biomass estimates at landscape and national 
scales (Alexander et  al. 2018; Chave et  al. 2004). 
Inconsistencies between satellite data, ground-level 
measurements, and biomass estimates, generated by 
uncertainties in data and/or allometric scaling are 
ignored in C accounting for many projects (Yanai 
et  al. 2020), leading to overconfidence in the esti-
mates of removals or additionality. Thus, there is a 
key gap between the role of uncertainty in scientific 
understanding, and the treatment of uncertainty in 
forest climate mitigation policies. Adopting policies 
that incentivise reporting, including fully character-
izing sources of uncertainties, while advancing ways 
to reduce uncertainties would help address this gap.

Gaps between policy and forest ecosystem science

A second set of issues surrounding forest-based 
climate mitigation concern the gap between cur-
rent ambitions and fundamental trade-offs in for-
est ecosystem C dynamics. Many assessments of 
the potential for forests to mitigate climate change 
depend upon forests reaching their maximum CSP 
(Hurtt et  al. 2019). A recent estimate indicates that 
fully stocking productive forests of the US has the 
potential to sequester an additional 187.7 ± 9.1 



	 Plant Soil

1 3
Vol:. (1234567890)

MMT CO2 equivalent per year (Domke et al. 2020). 
However, managing towards maximum stock car-
ries with it an increasing risk of reversal in certain 
disturbance-prone forest types. Indeed, there is a 
temporal trade-off between the short-term C conse-
quences of management (i.e., biological emissions/
removals and/or combustion emissions) vs. the long-
term C consequences of disturbance in an unman-
aged forest (Hurteau et al. 2008). In addition, there is 
a trade-off between managing for maximum C stock 
vs. maximum C flux. Flux is greatest in young, fast-
growing forests and C stock is greatest in old forests. 
This suggests that forest-based climate mitigation 
activities can lead to additionality by two contrast-
ing paths: protecting forests that already have high C 
stock or promoting fast-growing forests with high C 
flux (Box 1, panel 2C, D). Fahey et al. (2010) argued 
that the latter approach, plantation forestry, combined 
with the use of harvested wood for products that 
return to the atmosphere slowly - essentially, treating 
the forest system as a biological pump - is the best 
way to remove CO2 from the atmosphere. In practice, 
this is an optimization problem that requires substan-
tial future research (Oliver et  al. 2014). Prioritizing 
intensive plantation-style forestry over high accumu-
lated C in an old growth forest system is counterpro-
ductive if the harvested wood is used in a way that 
returns the C to the atmosphere faster than it would 
have from the forest itself, i.e., for products that have 
a short lifespan, and/or it leads to reduced stock of 
overall ecosystem C (including negative impacts of 
forest harvest on litter and soil C pools; Mayer et al. 
2020; Terrer et al. 2021). Clearly, improved account-
ing of all forest C pools, the wood products pool, and 
the full C consequences of forest harvest and distur-
bance processes is required to make robust judge-
ments about this optimization problem (Geng et  al. 
2017; Gunn and Buchholz 2018).

A final gap in forest NCS policy is neglect of 
environmental and social safeguards, which aim to 
preserve co-benefits derived from forest ecosystems 
(Pörtner et  al. 2021). Some climate mitigation pro-
jects - the creation of forest monoculture plantations, 
for example - have been actively harmful to biodi-
versity and other environmental objectives (Brundu 
and Richardson 2016). Generally speaking, biodi-
versity increases ecosystem function (Cardinale et al. 
2012), including productivity (Hua et al. 2016; Mori 
et al. 2021) and resilience against forest threats, from 

drought to pest outbreaks (Chapin et al. 2009; Folke 
et al. 2004; Rist and Moen 2013). Other environmen-
tal safeguards should include stronger provisions for 
soil and water conservation; many NCS policies only 
require minimizing impacts, without explicit policies 
to conserve soil or water.

Social safeguards and co-benefits are also neces-
sary for forest and community resilience as climate 
changes (Hajjar et  al. 2021), and are not necessarily 
enforced under carbon-centered verification schemes. 
These safeguards include land and labor rights, the 
inclusion of vulnerable or underrepresented popula-
tions in decision-making from an early stage, and 
free, prior, and informed consent by the local com-
munity and/or indigenous groups. In fact, in the US, 
agricultural and rangeland management practices 
on tribal lands have been shown to conserve carbon 
stocks more than parallel practices on non-indigenous 
lands (Teasdale et  al. 2007; Wall and Masayesva 
2004; West and Post 2002). Sustainable and equi-
table US carbon programs could benefit from the 
work of established coalitions of indigenous com-
munities such as the National Indian Carbon Coali-
tion (https://​www.​india​ncarb​on.​org/). Partnership 
between Indigenous and non-indigenous communi-
ties and governance entities, for example California’s 
partnership with the Yurok Tribe (Manning and Reed 
2019), would help ensure that NCS projects adhere to 
these social safeguards (McCarthy et al. 2018; John-
son et al. 2021). Poor implementation of forest NCS 
has already been detrimental to ecosystem C storage, 
water balance, and food security of local communi-
ties (Abreu et  al. 2017; Fuss et  al. 2018; Holl and 
Brancalion 2020; Pörtner et al. 2021; Veldman et al. 
2015). However, voluntary and private programs have 
been developing standards to verify that these safe-
guards are implemented, as well as linking measur-
able co-benefits to C credits through, for example, 
Verra’s Climate, Community, and Biodiversity Pro-
gram (Verra 2021).

Across scales of accounting, transparent, credible 
and complete estimation of emissions and remov-
als is needed to more accurately assess progress; this 
requires attributing drivers of C storage in order to 
better anticipate consequences of mitigation actions. 
While complexities in forest C uptake contribute 
to the uncertainty in the additionality, permanence, 
reversal, leakage, and co-benefits of forest-based 
mitigation activities, process-based forest simulation 

https://www.indiancarbon.org/
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models are one useful tool to quantify and reduce 
uncertainty in forest C counting over space and time.

Panel 1 illustrates three key points about forest-
based NCS across space. First, REDD+ standards 
mandate that mitigation activities account for leak-
age. For example, if emissions from deforestation 
are avoided through protection of one forest stand, 
demand for wood products should not be transferred 
to another forest stand. Second, mitigation activi-
ties should account for spatially heterogeneous and 
contagious disturbance processes that transfer C 
from the forest to the atmosphere. Third, a diversity 
of forest-based climate mitigation activities can be 
employed across space, including forest protection, 
plantation-style forestry, and ecological forestry. 
Panel 2 illustrates forest C dynamics through time 
with implications for forest-based NCS. a) A moni-
toring, reporting, and verification (MRV) system 
estimates baseline C storage (i.e., a forest reference 
level; FRL), which is then projected forward in time 
and used to assess additionality of a climate mitiga-
tion action. In B-D, three scenarios of change in C 
stock through time are illustrated, with recovery from 
natural and anthropogenic disturbances (solid lines), 
and how these legacies interact with alternative man-
agement (or no management) scenarios (dashed lines) 
and novel conditions, such as changing climate (dot-
ted lines). b) Some disturbance-prone forests are at 
risk of reaching a tipping point under changing cli-
mate, but ecological management may help allevi-
ate these vulnerabilities. For example, in the South-
western US, suppression of fire in forests historically 
characterized by a high frequency-low severity fire 
regime has led to overstocked forests. When fire does 
occur, it can be of uncharacteristically high sever-
ity (stand-replacing), leading to a shift to a non-for-
ested state. Thinning treatments have been proposed 
as a management technique to increase resilience. 
c) Afforestation or reforestation has been observed 
with recovery from past land uses (e.g., in the East-
ern US) and is proposed as a means to an enhanced 
forest C sink. We show two contrasting forest man-
agement strategies aimed at climate change mitiga-
tion, maximizing C stock vs. C flux. In the former, 
these forests would be allowed to return to a fully 
stocked state, i.e., reach their carbon storage potential 
(CSP), although that CSP may decline with chang-
ing climate. Alternatively, they could be managed for 
rapid biomass production with short rotation cycles, 

i.e., plantation-style forestry, or with longer rotation 
cycles, i.e., improved forest management. d) Old-
growth forest stands, especially in the temperate rain-
forest zone, have exceptionally high C stocks. These 
forests could be protected or these stands could be 
deforested for timber resources, but recovery to CSP 
would take centuries. Models can supplement MRV 
systems to broaden the temporal depth by hindcasting 
to explore HRV and legacy effects, and by forecasting 
to explore alternative mitigation actions, novel condi-
tions under changing climate, and feedbacks with the 
climate system. Further, incoming data from MRV 
systems can be used to improve models.

Opportunities: using models and data to fill gaps

Models

Because climate has such pervasive effects on forests, 
and the climate system is changing, forest dynamics, 
including C sequestration and storage, are expected 
to change. Simulation of forest dynamics is at present 
the only plausible means of anticipating the future 
ecosystem services provided by forests, i.e., to plan 
climate mitigation, at both large (global) and small 
(site-specific management) scales. Models are also 
key to reconstructing past forest dynamics (e.g., 
improving estimates of baseline forest C dynamics, 
Keane et al. 2018), assessing progress towards goals 
(i.e., MRV; Box 1, Panel 2), and attributing change to 
different drivers (Thom et al. 2018), so that progress 
can be more accurately portrayed and anticipated. For 
all these reasons, forest models have a key role to play 
in guiding and improving forest-based NCS.

There is a great diversity of models that simulate 
forest systems (Albrich et  al. 2020), including gap 
models (Bugmann 2001; Shugart et al. 2018), growth 
and yield models (Peng 2000; Porté and Bartelink 
2002; Weiskittel et al. 2011), forest landscape models 
(Shifley et  al. 2017), and dynamic global vegetation 
models (Fisher et  al. 2018). No one model is ideal 
for the NCS problem, since the problem spans many 
scales and processes. Broadly speaking, forest mod-
els range from process-based, including land surface 
and forest landscape models, to empirical, i.e., forest 
stand-scale models used by foresters. Each have key 
capabilities, or explicit representation of key pro-
cesses, needed to address scientific uncertainties or 
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fill gaps, as well as specific areas for improvement. 
Land surface models, for example, will likely play a 
key role in the global stocktake process (Grassi et al. 
2021); a major source of uncertainty in their projec-
tions of the future forest C sink concerns the strength 
of the CO2 fertilization effect - i.e., to what degree 
it may not be realized because other factors become 
limiting to plant growth (nutrients, soil moisture). 
Forest landscape models excel at the explicit repre-
sentation of spatially contagious forest processes, 
such as fire and insect outbreaks, which cause rever-
sal of forest C stocks. The science of assessing rever-
sal risk would be advanced with better representation 
of the influence of forest stand structure on fire risk 
and fire behavior in FLMs, which would help better 
navigate the trade-off between forest stocking and 
reversal risk that is inherent in some forests. We detail 
these two classes of process-based forest models fur-
ther in Box 2.

The strength of empirical forestry models is their 
long history of development and use for site-specific 
forest management, and more recently, their use to 
estimate forest C stock, including life cycle analysis 
of C in wood products. That is, they form the basis 
for forest C calculators (reviewed by Zald et al. 2016). 
Historically, they have undergone extensive param-
eterization and validation to satisfactorily represent 
the stand-level competition-driven self-thinning 
process characteristic of closed-canopy forest stand 
development (Shifley et  al. 2017; Weiskittel et  al. 
2011), hence they are the simulation tool of choice 
used by silviculturists to make forward projections 
of natural forest stand dynamics. They are the only 
modeling approach to directly simulate the effect of 
alternative silvicultural treatments on C stocking and 
other desired outcomes (Moore et  al. 2012; Puhlick 
et  al. 2020). And while stand-level forestry models 
are inherently limited in representing fire contagion 
compared to forest landscape models, they do have 
the capacity to estimate fire risk as a function of cur-
rent fuels profile, fuel loading, and stand conditions 
(sensu Reinhardt and Crookston 2003). Grounded in 
local observations (statistically parameterized and ini-
tiated with regional forest inventory data) they have 
great potential to guide local-level forest management 
activities aimed at climate mitigation. However, they 
lack representation of the direct influence of climate 

on tree growth (i.e., C flux) and hence should be 
expected to extrapolate poorly to novel climate condi-
tions (Evans 2012).

Box 2: Process‑based forest models  Land surface 
models (LSMs) simulate the energy, water, C, and 
nutrient dynamics of the terrestrial biosphere in terms 
of coupled biophysical, hydrological and biogeo-
chemical processes (Fisher and Koven 2020). LSMs 
scale from detailed physiological models of plant 
processes (e.g., subhourly radiative transfer, photo-
synthesis and gas exchange, soil moisture dynam-
ics), through plant growth and soil biogeochemistry 
processes, up to vegetation dynamics and changes in 
long-term C storage. The representation of vegetation 
structure within LSMs varies along a continuum of 
heterogeneity and realism from, at the coarsest end of 
the spectrum, "big-leaf" models, where vegetation is 
modeled as a homogeneous surface, to cohort models, 
which track the average individual in a group, such 
as a species and age class (Moorcroft et  al. 2001), 
to individual tree models, as in spatially explicit 
individual-based models (Sato et  al. 2007), which 
use forest gap models or individual-based models to 
simulate forest dynamics (Christoffersen et al. 2016; 
Friend et al. 1993; Maréchaux and Chave 2017; Sak-
schewski et  al. 2016). The key strength of LSMs is 
their process-based linkage of surface energy bal-
ance, hydrology, plant physiology, biogeochemistry 
and nutrient cycling, and ecological dynamics (com-
petition, demographics, fire, plant mortality, land 
management, etc.) into a single framework. They are 
most commonly used as components of Earth sys-
tem models (ESM) to explore the coupled interaction 
of these processes, including the role of the land in 
influencing climate, the potential impacts of climate 
change (including fires, floods, vegetation mortality, 
crop productivity), and the impacts of changing land 
use and management (Lawrence et  al. 2016; Luys-
saert et al. 2018). LSMs are the tool of choice to esti-
mate emissions and removals from the land sector 
for the global C budget (Friedlingstein et  al. 2020), 
but the persistently wide spread of LSM projections 
(Koven et  al. 2021) is due in part to their high pro-
cess complexity. Newer approaches to managing the 
complexity of LSMs via isolation of individual sets of 
processes (Chitra-Tarak et al. 2021; Fisher and Koven 
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2020; Needham et al. 2020) as well as data assimila-
tion either to calibrate models parameters (Fer et al. 
2018; Thomas et  al. 2017) or to update predicted 
model states with existing data (Fox et al. 2018; Raiho 
et al. 2020; Smith et al. 2020a) may allow future gen-
erations of LSMs to be more closely constrained by 
data and provide guidance on management at finer 
resolution. In particular, LSMs can in principle gen-
erate estimates of the ‘risk of reversal’ due to certain 
classes of climate hazard (fires, droughts, heatwaves, 
chronic warming) which might be applied to estimate 
the size of buffers necessary to mitigate against such 
risks (Buotte et al. 2019). More needs to be done to 
make LSMs or ecosystem models usable at a site-
specific scale. One step in that direction is the PEcAn 
project (Predictive Ecosystem Analyzer, https://​pecan​
proje​ct.​github.​io/), a freely-available set of tools and 
reproducible workflows to incorporate multiple data 
streams into state-of-the-art ecosystem models at a 
user-specified location.

Forest landscape models (FLMs) are used to 
explore forest dynamics in response to processes that 
propagate spatially across landscapes, especially dis-
turbances (Dobor et al. 2018; Scheller and Mladenoff 
2007; Shifley et al. 2017), and therefore the ‘revers-
ibility’ of C sinks. Explicit simulation of the spread 
of fire and the movement of insects and seeds is an 
important element of anticipating forest CSP. FLMs 
are both spatially explicit and spatially interactive, 
including representation of subgrid land cover hetero-
geneity and interaction between adjacent units, mak-
ing possible the simulation of lateral processes. Land-
scapes are gridded into sites, and within each site, 
forest stand demographics are modeled, for example, 
using forest gap models. Trees can be represented in 
cohorts (Mladenoff 2004; Schumacher et al. 2004) or 
as individuals (Seidl et  al. 2012). Some FLMs inte-
grate physiological models (de Bruijn et  al. 2014; 
Dijak et al. 2017), and hence can be used to explore 
the interacting effects of climate and multiple dis-
turbance processes (e.g., wind and insects, Seidl and 
Rammer 2016; fire, insects, pathogens, Loehman 
et  al. 2016), as well as management (Schumacher 
and Bugmann 2006). Outputs of forest features from 
FLMs can be coupled with a C model (Dymond et al. 
2016) and used to quantify the interacting effects of 
species composition, climate change, disturbance, 
and management on CSP (Loudermilk et  al. 2017). 

Some FLMs can further account for emissions from 
wood products. FLMs are useful for both hindcast-
ing (Colombaroli et  al. 2010; Henne et  al. 2011) 
and forecasting (Elkin et  al. 2013; Temperli et  al. 
2013), hence the attribution of natural and anthro-
pogenic disturbance processes (Keane et  al. 2018). 
Like LSMs, there is a need to make FLMs more user-
friendly, i.e., create interfaces that make it possible 
for foresters and planners to better take advantage of 
their capabilities. Shifley et al. (2017) identifies ave-
nues for future development and broader applications 
for FLMs so that they can further contribute to man-
agement and policy decisions regarding forest-based 
NCS.

Data

Key to improving models, and filling some of the 
gaps identified above, is the use of data, and in par-
ticular, combining data with information at com-
plementary spatial and temporal scales (extent and 
resolution; Babst et al. 2018; Bustamante et al. 2016; 
Dietze et  al. 2018). Forest inventory data form the 
basis for empirical forestry models. In the US, the 
permanent sample plot network of the FIA program 
provides on-the-ground data designed to be represent-
ative of the range of forest conditions in each state 
(Burrill et  al. 2018). However, these field measure-
ments are time-consuming and expensive to collect, 
so plots are revisited on 5- to 10-year intervals. This 
multi-year temporal resolution makes inventory data 
less than ideal for detecting the influence of climate 
variability on tree growth. A complementary source 
of data with annual resolution, available for many 
important tree species in boreal and temperate forests, 
are ring-width data, generated from increment cores. 
The increment borer was invented by foresters in the 
1800’s to measure tree growth. Surprisingly then, 
their use in forestry models has been limited. Instead, 
tree-ring data have been used by foresters primarily 
to age forest stands and hence estimate site produc-
tivity, by ecologists to reconstruct forest disturbance 
regimes (Brookes et  al. 2021; Swetnam et  al. 1999; 
Swetnam and Lynch 1993) and understand responses 
to climate variations (Pederson et  al. 2014), and by 
climatologists to reconstruct past climate and hydro-
logic variation (Cook et al. 2004; Fritts 1976; Wood-
house and Pederson 2018). Though annual growth 
rings are most reliably formed in extra-tropical 

https://pecanproject.github.io/
https://pecanproject.github.io/
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realms, hence their utility is limited in tropical forests 
(Silva and Lambers 2021), tree-ring data collected 
in the context of a forest inventory or other statisti-
cally designed sampling program provide an unbiased 
way to parse multiple drivers of tree growth, allowing 
for the attribution of natural or anthropogenic driv-
ers (Clark et al. 2007; Evans et al. 2017; Evans et al. 
2022; Dye et  al. 2016; Heilman et  al. 2022; Klesse 
et al. 2018, 2020).

Combining data sources to make a climate‑sensitive 
forestry model

Here we illustrate the approach of combining data 
sources to improve an empirical forestry model in a 
manner critical for site-specific forest-based NCS 
purposes. In particular, by adding tree-ring to forest 
inventory data in the parameterization of a stand-level 
forest growth and yield model, the Forest Vegeta-
tion Simulator (FVS), this model has been updated to 
explicitly represent the direct effects of climate vari-
ation on tree growth, hence C sequestration (Giebink 
2021). FVS is the forest growth and yield model most 
widely used in the United States (Dixon 2002). Its 22 
regional variants are normally parameterized with 
regional, historical inventory data alone. Users then 
provide site-specific tree and plot inventory data to 
initialize forest stand conditions to simulate growth, 
mortality, and forest response to any number of man-
agement actions, including silvicultural treatments 
(Crookston and Dixon 2005). FVS forms the basis for 
multiple C calculators (Fahey et al. 2010; Zald et al. 
2016). Indeed, FVS has been used in the US to guide 
local-level management decisions aimed at creat-
ing additional C sequestration and storage over long 
time scales (Moore et al. 2012; Puhlick et al. 2020), 
and is used by some entities in the US voluntary C 
market for calculating emissions and removals (e.g., 
Climate Action Reserve Inventory Tool for FVS, 
CARIT-FVS).

Relatively recently, it became possible to explore 
potential climate change impacts in FVS with the 
Climate-FVS extension (Crookston et al. 2010). How-
ever, these modifications are coarse. Climate-FVS 
uses estimates of climatic suitability from species-
level environmental envelopes, based on species 
occurrence data (e.g., Rehfeldt et al. 2006), to modify 
forest dynamics, including tree-level growth. Tree 
growth can also be modified at the population level 

using data on the average growth response to average 
climate from a very limited number of provenance 
trails (e.g., Leites et  al. 2012). Expected growth is 
modified in Climate-FVS by whichever--either the 
species- or population-level response to changing cli-
mate--is most limiting.

An alternative is to use tree rings sampled at a 
broad spatial scale to quantify intraspecific (popu-
lation-level) heterogeneity in average growth rate 
and the sensitivity of growth to interannual climate 
variability (Canham et  al. 2018; Klesse et  al. 2020; 
McCullough et al. 2017). Increment cores sampled in 
FIA’s network of permanent sample plots throughout 
the interior western United States before 2000 were 
recently discovered and compiled into a tree-ring 
data network (DeRose et  al. 2017). This unbiased 
FIA tree-ring data set (Klesse et al. 2018) presented 
a unique opportunity to use the rich information on 
climate effects recorded in annual growth rings, 
complemented by inventory data from their associ-
ated forest plots, to parameterize FVS growth mod-
els. Using these FIA data for dominant tree species 
in the US semiarid state of Utah, including ponder-
osa pine (Pinus ponderosa) and Engelmann spruce 
(Picea engelmannii), Giebink (2021) parameterized 
a climate-sensitive version of the large-tree diameter 
growth model used in FVS. With the addition of tree-
ring data, this model captures heterogeneity in cli-
mate response beyond what is provided by the current 
FVS growth model and at higher temporal resolution 
than Climate-FVS. Four results of this effort to make 
FVS climate-sensitive are relevant. First, parameteri-
zation with tree rings yielded more accurate predic-
tions of growth, in an out-of-sample validation exer-
cise spanning just 10 years (Giebink 2021).

A second result is that the addition of climate sen-
sitivity typically reduces projected future basal area 
compared to FVS projections (Fig. 2 and Supplemen-
tal Fig. 1), which follows logically, given the negative 
temperature sensitivity of tree growth across Utah. 
By failing to account for the climate sensitivity of tree 
growth, the FVS model overestimates the rate of C 
sequestration of most forest stands. 

A third point is that incorporating the direct effect 
of climate on tree growth made it possible to model 
how climate might interact with other drivers of vari-
ation in absolute tree growth, such as competition. 
That is, multiple regression modeling enabled by the 
combination of tree ring and other forest inventory 
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measurements made it possible to statistically parse 
and attribute variation in tree growth to multiple driv-
ers. We found competition within the stand increases 
climate sensitivities, suggesting that forests can be 
managed (thinned) to mitigate the stress associated 
with warming temperatures (Keen et al. 2021).

Fourth, an increase in stocking over time directly 
corresponds to increasing risk of stand-replacing 
fire - an inherent risk in forests of the intermountain 
western US. During the simulation of forest stand 
development in FVS, fire hazard can be described 
by the Fire and Fuels Extension (Rebain et al. 2021) 
under moderate or severe weather conditions (e.g., 

temperature, fuel moisture, and wind speed). Poten-
tial fire behavior is strongly influenced by the stage 
of stand development, stand structure (i.e., even-aged 
vs uneven-aged), surface fuel loading (down and dead 
fuel), and ladder fuels (i.e., saplings and understory 
vegetation). Management actions that alter the com-
position or structure of overstory trees, as well as 
the redistribution of the fuels profile (e.g., removing 
snags, masticating surface fuels, etc.) can influence 
fire hazard, and can be simulated artificially in FVS 
to evaluate possible outcomes (including C stocks). 
Thus, FVS allows for scenario planning of poten-
tial mitigation activities at a scale relevant to the 

Fig. 2   Observed and projected C storage with and with-
out the effect of climate. Total basal area of live trees in pure 
Engelmann spruce or ponderosa pine stands in semiarid Utah 
as observed by the Forest Inventory and Analysis (FIA) pro-
gram (black line), modeled without the effect of climate by the 
Forest Vegetation Simulator (FVS; dark green line), or mod-
eled with the effect of climate by a tree-ring-informed model 
based on FVS (light green line) with species-specific maxi-
mum basal area (dashed red line; Keyser and Dixon 2019). The 
FVS projection cycle was set to 5 years, so the basal area of 

live trees is calculated every 5 years. Basal area of live trees 
is calculated annually with outputs from the climate-sensitive, 
tree-ring informed model. PRISM climate data were used for 
years before 2020 (Daly et al. 2008), whereas beginning with 
the year 2020 (and after), downscaled projections under the 
representative concentration pathway (RCP) 8.5, were used 
(Supplemental Table  1, Reclamation 2014). Therefore, the 
climate-sensitive, tree-ring informed projection is an average 
with standard deviation between outputs from an ensemble of 
32 climate models
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management of forest stands. These results become 
important as managers seek to anticipate appropri-
ate stocking levels, navigating between targets for 
increased carbon stocking vs. the risk of forest C 
reversal.

With locally sourced tree-ring time series data and 
this climate-sensitive version of FVS, managers can 
better characterize climate vulnerability and expected 
climate impacts specific to their management unit, at 
least in temperate and boreal forest systems. In extra-
tropical forest systems, tree rings can contribute to 
a better estimate of baseline C sequestration under 
changing climate (i.e., FRL). An important next step, 
in terms of combining data sources to improve for-
est carbon modeling, would be to link these ground-
based, point observations (forest inventory and 
tree-ring data) with remotely sensed observations. 
Remotely sensed vegetation biomass or carbon stocks 
based on spectral, microwave or lidar measurement 
can be used to monitor changes in carbon stocks 
caused by changes in land use, management, and dis-
turbance (e.g., Li et al. 2018; Wang et al. 2021), and 
they already play an important role in national carbon 
monitoring programs (e.g., Roswintiarti et  al. 2013; 
Shvidenko et  al. 2011; Waterworth and Richards 
2008). Remotely sensed surface energy balance meas-
ured by reflectance or thermal infrared techniques can 
be used to monitor warming or cooling potential of 
the land surface depending on land use (Smith et al. 
2020b; Stavros et al. 2017). These methods are argu-
ably the most appropriate source of continuous data 
for spatial monitoring of these key ecosystem-climate 
feedbacks (Kustas et  al. 1994; Sellers et  al. 2018; 
Yang et  al. 2013) - above-ground carbon stocks and 
land-atmosphere energy balance - as well as the effect 
of management on aboveground ecosystem processes.

Conclusion

At this juncture in the climate crisis, it has become 
necessary to view human activities - how energy is 
generated and used, how land is used, how forests are 
managed - as part of a larger whole of interconnected 
hydrological, energetic, biogeochemical, ecological, 
and climate systems. From this perspective arises 
both the opportunity and challenge of managing for-
ests to mitigate climate change. We conclude with 

three points about this opportunity and challenge in 
terms of what needs to be done.

First, it is critical that the enthusiasm surrounding 
forest-based NCS be tempered in the light of serious 
scientific uncertainties surrounding forest C dynam-
ics in a non-stationary climate, including the risk of 
climate-driven forest loss. Put another way, NCS are 
designed to impact the global C cycle, hence their 
structures should broadly reflect known risks to the 
viability of long-term C storage. Specifically, grid-
ded ‘climate risk’ maps that indicate locations where 
forest persistence is in doubt, should be routinely 
appended to estimates of C sink persistence and esti-
mates of necessary buffers in forest-based NCS plan-
ning. Further, estimates of land-climate feedbacks, 
involving changes in C, water and energy balance 
brought about by large scale forest management, 
should also be an integral part of forest-based NCS 
planning, to avoid unintended consequences. The 
climate benefits of forest-based NCS can be overesti-
mated if these uncertainties and complexities, among 
others, are not accounted for. In fact, changes in the 
climate system have advanced so much already that 
maintaining historical levels of C sequestration by the 
land sector may be the best we can hope to achieve, 
let alone additional C sink behavior, above that 
baseline.

Following closely on the first point is a sec-
ond: that the success of forest-based NCS depends 
critically upon improved forest C accounting. This 
includes improvements in data, in accounting prac-
tices and procedures, and in attribution of C dynam-
ics, facilitated by data and models, though we note 
also that investment in data and models must also 
consider the C consequences of data collection as 
well as model development and simulations (Lanne-
longue et  al. 2021). An evidence-based path to suc-
cess clearly requires data on the most significant C 
cycle pools and fluxes, of which forest soil C and the 
causes of its loss are the most neglected. C account-
ing across scales currently have different objectives 
and standards with respect to estimating storage and 
flux, making it very difficult to scale from project-
based management actions to global atmospheric 
consequences. While C accounting procedures do 
not need to look exactly the same at all scales (not 
all ecological processes are important at all scales), 
greater continuity across scales would facilitate the 
kind of adaptive management that is urgently needed. 
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At all scales, improved attribution of C stocks and 
fluxes to natural and anthropogenic causes is neces-
sary to estimate and anticipate how much forest-based 
NCS can realistically contribute to climate mitigation. 
Models provide a way to parse drivers of C storage 
and flux, and greater investment in model develop-
ment, including the addition of new data sources, 
would improve process understanding and attribution. 
We have provided one example: a tree-ring-informed, 
climate-sensitive version of FVS makes it possible to 
provide climate driver input to a stand-level decision 
support tool to evaluate boreal and temperate forest 
management tactics explicitly in terms of C stock and 
flux projections. A further improvement would be to 
better capture in empirical forestry models the non-
linear response of tree growth to multiple, interacting 
environmental drivers (increased atmospheric CO2, 
increased evaporative demand, N availability, etc.), 
i.e., reflecting underlying physiological processes.

A third point on forest-based climate mitigation 
is that it is important to be cognizant of fundamen-
tal trade-offs in forest ecosystem functioning, and 
between climate regulation vs. other ecosystem ser-
vices provided by forests, to avoid perverse outcomes. 
It is not possible to maximize the C stock and C flux 
of a forest system at one time and spatial location, 
as illustrated in Box 1. Plantation-style forestry with 
short rotations will maximize land C flux, whereas 
maintaining mature forests that have accumulated 
(and continue to accumulate) C will maximize land C 
stock. Consideration of other important goals besides 
C such as ecosystem resilience, biodiversity, water, 
etc., will likely require striking a balance between 
maximizing C flux vs C stocks in forest management 
planning. This multiple use perspective, which uses 
natural processes to guide management approaches, 
has been referred to as ecological forestry (Franklin 
et  al. 2018; Kohm and Franklin 1997). In practice, 
some mix of these three basic strategies at scales of 
the landscape or larger, is most likely to maximize 
multiple goals (Box 1, panel 1; and see Seymour and 
Hunter Jr. 1992). Indeed, the co-benefits of forest 
management aimed at climate mitigation, including 
the maintenance of biodiversity, tend to be underesti-
mated or undervalued. An important priority is to not 
neglect these co-benefits or other safeguards, as there 
are many ways that forest preservation, restoration, 
re/afforestation, and improved forest management can 
contribute to addressing the climate crisis. Moving 

forward, national-scale programs may take inspira-
tion from the progress made by voluntary programs, 
such as Verra’s Climate, Community, and Biodiver-
sity Program, to better account for the co-benefits of 
NCS management that are brought about by coupled 
conservation or multi-use approaches.

These priorities provide a path forward for realis-
tically assessing forest-based mitigation potential so 
that progress towards national and global emission 
targets can be made, including updates to reduction 
ambitions. Rather than viewing the emissions reduc-
tion potential of forests as permission to continue to 
produce GHGs, a more realistic perspective might be 
to view emissions reductions as critical to preserve 
the climate mitigation capacity of forest ecosystems.
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