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Reconsidering space-for-time substitution 
in climate change ecology
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Ecologists often leverage patterns observed 
across spatial climate gradients to predict the 
impacts of climate change (space-for-time 
substitution). We highlight evidence that this 
can be misleading not just in the magnitude 
but in the direction of effects, explain why, and 
make suggestions for improving the reliability 
of ecological forecasts.

Climate influences the functioning of ecological systems, from the 
physiology and fitness of individuals to the dynamics of populations 
and species’ distributions to the productivity, resilience and biogeo-
chemical cycling of ecosystems. Because of the many benefits these 
ecological systems provide to humanity, including regulation of 
Earth’s climate, predicting the ecological impacts of climate change 
is an urgent challenge. Space-for-time substitution (SFTS) is a stra-
tegy used to predict ecological responses to changing climate when 
long-term observations are lacking; prediction is instead based on 
patterns observed across spatial climatic gradients. We note that this 
form of SFTS differs from an analysis of sites at different successional 
stages (known as a chronosequence) where the term SFTS originated. 
The most prevalent use of SFTS is species distribution modelling, but 

SFTS has also been used to predict population carrying capacity,  
community composition and ecosystem productivity.

However, accumulating evidence casts doubt on the reliability 
of SFTS for predicting ecological responses to climate change. Using 
a spatial network of tree-ring time series for Pinus ponderosa, Perret 
et al.1 showed that trees grow faster at warmer locations but slower in 
warmer-than-average years (Fig. 1a,b). Thus, SFTS forecasting suggests 
trees should benefit from warming (Fig. 1c), whereas the tree-ring data 
showed that trees suffered in response to warming. The SFTS forecast 
was misleading not just in magnitude, but in sign. Opposite responses to 
spatial versus temporal climate variation have been found in the growth 
of other tree species2,3, grassland productivity4, pathogen-driven for-
est mortality, demography of herbaceous plants, and bird abundance, 
suggesting this pattern is not uncommon (reviewed in refs. 1,3 and 5). 
Negative effects of warming throughout a species’ entire range1–3,6 
also contradict the expectation that individuals at the cool edge of 
species’ distributions should benefit from warming, that is, ‘leading 
edge’ range expansion.

We focus here on two reasons why SFTS predictions can be mis-
leading — namely, assumptions embedded in SFTS (Fig. 2a). The first 
is causality7. SFTS is based on regression, hence the familiar phrase 
‘correlation is not causation’ applies. Although spatial variation in cli-
mate can be statistically associated with an ecological variable such as a 
species’ occurrence or ecosystem productivity, this does not mean that 
climate is its only determinant (Fig. 2a, y axis). The risk of misattribution 
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Fig. 1 | Opposite responses to spatial versus temporal variation in temperature 
have been documented in several spatial networks of tree-ring time series. 
a, Across the geographic distribution of tree species, average growth rate is 
often faster at warm locations (orange shading) compared to cool locations 
(blue shading)1–3. b, Blue points indicate this spatial regression pattern. Red 
points indicate the response of individual trees within a population to variation 

in temperature across time (years): lower growth rate in warmer-than-average 
years. Each black curve represents a thermal performance curve, fading to grey 
to indicate the part of the curve not observed in the wild. c, Predictions of future 
tree growth based on spatial regression (SFTS) versus time-series regression are 
opposite in sign.
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of tree- and ecosystem-level productivity requires in situ evolution, 
dispersal of better-adapted genotypes from elsewhere, or colonization 
by better-adapted species, either naturally or via human intervention, 
such as assisted gene flow or assisted colonization (Fig. 2c). Thus, tran-
sient dynamics can lead to permanent or quasi-permanent undesirable 
outcomes such as the loss of ecosystem function or biodiversity. Failing 
to account for these transient dynamics could, in the example case 
of forest-based natural climate solutions, lead to missed emissions 
reductions or carbon storage goals.

Given the emerging evidence that SFTS predictions can be mis-
leading, we advocate for more diverse approaches to forecasting 
and a focus on improved forecast reliability via uncertainty analyses 
and model validation (Fig. 3). A first step is to qualitatively assess the 
assumptions that underpin SFTS and whether they are likely to be vio-
lated in the study system, given the targeted forecast horizon8,9 (Fig. 3, 
first node). As a rule of thumb, SFTS should be reliable if there is a strong 
causal relationship between climate and the variable being predicted, 
and if ecological processes do not lag behind the pace of climate change 
(Fig. 2a) or if the forecast horizon is long relative to the pace of lagging 
processes. For example, SFTS predictions are more likely to be reliable 
in study systems where evolution and dispersal (or other potentially 
lagging processes) are rapid, such as a microorganism or insect with 
a short generation time compared with a long-lived tree, or a mobile 
organism compared with a sessile organism9 (Fig. 2b).

If the assumptions of SFTS are not unambiguously met, we recom-
mend estimating the uncertainty surrounding SFTS forecasts (Fig. 3).  
A relatively low-effort exercise is to bound forecast uncertainty caused 
by potentially lagging processes using contrasting (‘data free’) scenar-
ios (Fig. 3, path 2). Such uncertainty reporting has long been common 
in species distribution modelling using scenarios of unlimited versus 

is particularly heightened in an era of abundant spatial data and flexible 
regression techniques (machine learning and artificial intelligence) 
that excel at matching patterns. SFTS can alternatively be viewed as 
using climate as a proxy for additional causal factors, with the assump-
tion that correlations between climate and those other factors will not 
change. Both assumptions are likely to be frequently violated.

The second reason SFTS can be misleading is that ecological 
responses often lag behind climate change (Fig. 2a, x axis). Organisms, 
communities and ecosystems adjust to climate variability and change 
via processes that operate on timescales from very fast (physiological 
acclimation, plastic expression of traits and demographic outcomes) 
to slow (evolutionary adaptation, dispersal of genotypes or species, 
changes in community composition, and changes in soil characteris-
tics or biogeochemical cycling)2,3,5,8. Patterns inferred across spatial 
climate gradients tend to reflect the influence of slow in addition to 
fast processes; they represent equilibrium expectations of the rela-
tionship between climate and the ecological system or variable2,3,5,8. 
Anthropogenic climate change is outpacing some of these slower 
processes, generating lagged responses and transient dynamics that 
are not reflected in SFTS forecasts (Fig. 2b).

Contrasting transient versus equilibrium ecological dynamics, 
evidenced by contrasting responses to spatial versus temporal varia-
tion in climate, can have societally important consequences. As a case 
in point, the signatories to the Paris Agreement collectively plan to rely 
on forests to meet 25% of their greenhouse gas emissions reduction 
goals, making it critical to accurately predict forest ecosystem car-
bon dynamics. SFTS prediction of forest productivity (hence carbon 
dioxide drawdown) would suggest a positive response to warming, 
whereas the response observed from tree-ring time series is nega-
tive across much of the temperate and boreal zones1–3,6. Recovery 
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Fig. 2 | Reasons why SFTS may generate misleading predictions of ecological 
response to climate change. a, Two implicit assumptions underpin SFTS. The 
first (y axis) is that spatial climate variation alone causes spatial ecological 
patterns (or that correlations between climate and other causal factors will not 
change in the future). The second (x axis) is that the ecological response does 
not lag behind changing climate. b, Two examples of ecological processes that 
can generate a lagged response are evolutionary adaptation and dispersal, with 
examples of life history characteristics that influence lag time. The potential for 
transient dynamics increases with lag time. c, Example of an ecological variable 
(forest productivity) showing a lagged response to warming, with contrasting 
transient versus equilibrium dynamics. The historical baseline level of forest 

productivity is indicated with a horizontal dashed line. A gain in productivity 
relative to this baseline is indicated with blue shading; a loss of productivity in 
indicated with red shading. A negative impact of warming on forest productivity 
(and carbon sequestration) is predicted in the near term, based on regression 
of time-series data. A positive impact of warming on forest productivity is 
predicted in the long term, based on SFTS (spatial regression), but reaching that 
long-term expectation requires evolutionary adaptation (of thermal tolerances) 
or colonization by better-adapted genotypes or species, either naturally or via 
assisted colonization and gene flow. Panel c adapted from ref. 5 under a Creative 
Commons license CC BY 4.0.
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no dispersal. A similar approach could be taken to put bounds on the 
role that evolution could play in constraining species’ range change, 
that is, using scenarios of no local adaptation to climate (and/or rapid 
evolution) versus strong local adaptation (and/or slow evolution). A 
next level of effort is to compare climate sensitivities estimated from 
spatial versus temporal datasets4; if spatial and temporal climate sen-
sitivities are consistent, then uncertainty is much lower. Comparing 
forecasts based on different data types is a further step towards quan-
tifying forecast uncertainty. Regardless of the approach taken, there 
currently exist many data sources that can be creatively leveraged to 
evaluate how violations of SFTS assumptions might change forecasts, 
including observational time series, common garden experiments10,11, 
climate manipulation experiments, botanical gardens, species’ intro-
ductions, and resurrection studies (Fig. 3, path 3).

In addition, increased effort should be put into validating SFTS 
forecasts (Fig. 3), beyond cross-validation that divides spatial data 
into model training versus testing subsets. Validation can and should 
take many other forms: the use of time-series data for hindcasting1 
or change validation12, iterative near-term forecasting that com-
pares model predictions to newly collected data13, and a variety of 
forms of out-of-sample validation using independent data14. Data 
sources available for such forecast validation include the BioTIME  
(https://biotime.st-andrews.ac.uk/) and BioDeepTime (https://bio-
deeptime.github.io/) databases, biodiversity surveys and community 
science initiatives, monitoring of natural resources such as forests, 
fisheries and rangelands, natural archives (for example, pollen, tree 
rings and otoliths), long-term experiments, and accumulating remotely 
sensed data (Fig. 3, path 3). If validation statistics for SFTS forecasts 
are low1,12,14, further investigation is needed to determine whether low 
climate causality or transient dynamics are the reason.

Finally, greater effort and resources should be directed at gen-
erating new data that fill knowledge gaps (for example, time series, 
experimental and genetic; Fig. 3, path 4) along with new modelling 
approaches. Research is needed that quantifies the timescales of 
potentially lagging processes (for example, empirical estimates of 
local adaptation, evolutionary potential and gene flow) to understand 

whether evolutionary adaptation may constrain species’ persistence in 
the face of climate change9,15. Development of forecasting approaches 
that use causal inference or process-based models, or fuse data with 
complementary spatial and temporal characteristics (for example, 
remotely sensed and ground observations) in models, will help diver-
sify the forecasting toolbox.

The use of SFTS for ecological forecasting has long been justified 
as sufficiently accurate or the only approach fit for the task given the 
higher data needs of alternative strategies. However, SFTS carries a 
heavy assumption burden: that climate is the only driver of ecologi-
cal change (or correlations between climate and other drivers will not 
change) and that ecological systems will instantaneously equilibrate 
with changing climate. Recent work suggests violation of these assump-
tions yields predictions that are far from ‘good enough’, that is, direc-
tionally misleading. It is time to reconsider SFTS. Explicit interrogation 
of the assumptions underpinning SFTS and more diverse approaches 
to ecological forecasting — with uncertainty reporting, forecast  
validation and the creative use of existing and new data — will improve 
the reliability of ecological forecasts that underpin policy, management 
and mitigation of the climate and biodiversity crises.
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Diversified and reliable ecological forecasting
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Fig. 3 | A roadmap towards diversified and more reliable ecological 
forecasting. In the lower left is the status quo: SFTS is the default approach. 
Nodes are labelled with questions to guide forecasting choices, starting with a 
qualitative assessment of whether SFTS assumptions are met in the study system. 
If yes, forecasting can proceed with SFTS (path 1). If these assumptions are likely 
to be violated, but a low-effort approach is needed, SFTS can be accompanied 

by scenario-based uncertainty reporting (path 2). If resources are available that 
support greater effort, existing complementary data can be leveraged (path 3), 
or new data can be collected (path 4). On path 3 or 4, forecast reliability can be 
increased through uncertainty quantification, out-of-sample model validation 
and modelling alternatives to spatial regression.
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